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Potential use of actigraphy to measure sleep in
monkeys: comparison with behavioral analysis from

videography

DEAR EDITOR,

Since the epoch-making observations of circadian rhythm in
Mimosaceae plants, sleep has been investigated for centuries
(de Mairan, 1729; Du Monceau, 1758). As a natural and
reversible state, sleep is marked by reduced responsiveness
to external stimuli, relative inactivity, and loss of
consciousness. Although reduced responsiveness could
potentially introduce significant danger to survival, nearly all
animals in nature sleep. This strongly implies an adaptive role
of sleep in increasing overall fitness of an organism. Research
has shown that sleep is responsible for many vital
physiological functions, including tissue repair (Oswald, 1980),
skin function (Rechtschaffen, 1998), thermoregulation
(Parmeggiani, 1986; Rechtschaffen, 1998), energy saving
(Siegel, 2005), insulin release and responsiveness (Spiegel et
al., 1999), metabolic regulation (Sharma & Kavuru, 2010),
immunological enhancement (Besedovsky et al., 2012; Imeri &
Opp, 2009), synaptic plasticity (Benington & Frank, 2003),
neuron viability (Zhang et al., 2014a), and memory formation
(Rasch & Born, 2013; Walker & Stickgold, 2006). Sleep
therefore plays an essential role in human health and is vital
for physical and psychological performance (Halson & Juliff,
2017; Thun et al., 2015; Vitale & Weydahl, 2017).

Given its indispensable functions, insufficiency in sleep can
cause a cascade of negative consequences for general
health, as well as cardiovascular, metabolic, mental, and
immunological health, and in cancer, pain, and all-cause
mortality (Parekh et al., 2015; Scullin & Bliwise, 2015;
Vgontzas et al., 2013; Watson et al., 2015a, 2015b, 2015c,
2015d). Sleep is also equally important in behavioral and
physical performance. For example, sleep deprivation and
extension are negatively and positively associated with athletic
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performance, respectively (Thun et al., 2015), suggesting that
chronotype effects should be considered during the
scheduling of training sessions (Vitale & Weydahl, 2017).
According to the third edition of the International Classification
of Sleep Disorders (ICSD), there are seven major sleep
disorders, including insomnia, sleep-related breathing
disorders, central disorders of hypersomnolence, circadian
rhythm sleep-wake disorders, sleep-related movement
disorders, parasomnias, and other sleep disorders (Sateia,
2014).

Although human subjects are an ideal choice for studies on
sleep and sleep disorders, animal-based research has played
a fundamental role in the elucidation of the mechanisms that
underlie sleep, as well as its regulation and disorders, and is
essential for validating sleep mechanisms and testing
therapeutics for sleep disorders (Singh et al., 2017; Toth &
Bhargava, 2013). Sleep deprivation experiments have been
successfully performed in rats (Rechtschaffen et al., 1989),
mice (Mackiewicz et al., 2007; Maret et al., 2007), fruit-flies
(Shaw et al., 2002), and roundworms (Sanders et al., 2017).
Non-human primates (NHPs) are among the best-studied
animal models, in large part because of their close
phylogenetic relatedness to humans (Nunn & Samson, 2018;
Zhang et al., 2014b). Likewise, sleep also plays a dominant
role in NHP health, behavior, and ecology, and can exert a
significant influence on daily activity schedules (Anderson,
1998, 2000; Qiu et al., 2019). Thus, NHPs are especially
valuable for comparative studies on sleep, with tremendous
potential to provide critical improvement in our understanding
of human sleep and associated disorders (Fruth et al., 2018;
Nunn et al., 2010).

Electroencephalography (EEG) is commonly used in sleep

Received: 18 March 2020; Accepted: 13 May 2020; Online: 02 June
2020

Foundation items: This study was supported by the National Natural
Science Foundation of China (31700897, 31960178), Yunnan
Provincial Natural Science Foundation of China (2018FB053,
2019FA007), China Postdoctoral Science Foundation (2018M631105),
Post-Doctoral Training Program in Yunnan Province, and Key Realm
R&D Program of Guangdong Province (2019B030335001)

DOI: 10.24272/j.issn.2095-8137.2020.056

Zoological Research 41(4): 437-443, 2020 437


https://doi.org/10.24272/j.issn.2095-8137.2020.056
https://doi.org/10.24272/j.issn.2095-8137.2020.056
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.24272/j.issn.2095-8137.2020.056
https://doi.org/10.24272/j.issn.2095-8137.2020.056
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

research and can provide an objective and functional marker
of sleep (Feinberg et al., 1967; Roffwarg et al., 1964).
Although EEG can be performed in restrained or freely moving
animals under controlled laboratory conditions, this technique
is invasive, involving implantation of electrodes in the brain or
subcutaneously. Implantation usually involves drilling holes in
the skull to place electrodes directly on the brain. Compared
with a single-channel EEG, polysomnogram (PSG) is
considered the gold standard to objectively assess sleep
(Boulos et al., 2019; O'Donnell et al., 2018). PSG integrates
both normal and abnormal physiological indicators during
sleep, including brain activity (EEG), eye movements (EOG:
electrooculography), muscle activity (EMG:
electromyography), heart rhythm, respiratory effort, airflow
through the mouth and nose, and audible snoring. However, a
significant limitation of PSG is that it requires electrodes
attached to the scalp and skin surface, and sensors to collect
data (Lucey et al., 2016). These are difficult or impossible to
apply in freely moving monkeys. Even though subcutaneous
implantations are minimally invasive, PSG is expensive and
burdensome to obtain and may be difficult to use with longer
recording intervals. This greatly limits the use of PSG or EEG,
especially for long-term research involving a large sample
size.

The emergence of videography has offered convenience for
observing behaviors in naturally sleeping monkeys (Chen et
al.,, 2017; Kripke et al., 1968; Weitzman et al., 1965). The
video technique avoids the need for surgery and electrode
implantation, and most importantly, it is inexpensive and
noninvasive, allowing for large sample size and long-term
study by means of specific behavioral criteria defined for each
state. Nevertheless, manual video analysis presents some
limitations, including greater subjectivity and considerable
human labor and time requirements. In comparison,
actigraphy provides a more objective measure than
videography, and can be considered as an alternative sleep
assessment method in research (Ancoli-Israel et al., 2003;
Littner et al., 2003; Morgenthaler et al., 2007; Sadeh et al.,
1995; Sadeh & Acebo, 2002; Thorpy et al., 1995). The use of
actigraph accelerometers for detection of movement is a
reliable, noninvasive method for monitoring activity (Andersen
et al., 2010, 2012; Mann et al., 2005). Despite the increase in
studies utilizing actigraphy, no comparisons in sleep scoring
based on actigraphy and videography have been conducted in
NHPs.

The present study was designed to compare videographic
and actigraphic sleep scoring in 10 cynomolgus monkeys over
seven nights of simultaneous behavioral recordings, and to
validate the use of actigraphy in sleep measurement.

Mean locomotor activity for each monkey was measured by
Actical monitors attached to the monkeys’ necks (n=10). Data
collected by actigraphy over the seven days were presented
as means of that time period. As shown in Figure 1A, the
monkeys displayed consistently high activity during light time
(0800 h—2000 h) and low activity during dark time (2000
h—0800 h).
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Figure 1B shows the correlations between the mean time
spent in each state per night obtained from actigraphy and
videography analysis. Results showed a positive correlation
between the two methodologies for scoring the state of wake
(r=0.368 P= 0.002) and sleep (r=0.368, P= 0.002). When
measuring the state of transitional sleep (=—0.058, P=0.631)
and relaxed sleep (r=0.174,P= 0.149), no significant
correlation was observed.

Figure 1C shows the differences and limits of agreement
between actigraphy and videography measurements. Results
indicated that, compared with videographic analysis,
actigraphy underestimated the durations of wake and
transitional sleep by an average of 124.929 min and 132.271
min, respectively, but overestimated the durations of sleep
and relaxed sleep by 124.929 min and 257.200 min,
respectively.

Total durations of time spent in each state for each monkey
based on videography and actigraphy are illustrated in
Supplementary Table S1. When comparing the differences for
each state between the two methods, the durations of time
spent in each state obtained from actigraphy were significantly
different from those obtained by videography (wake:
actigraphy vs. videography=16.629+1.404 vs. 141.557+4.652
min per night, P=1.771x10° ; sleep: actigraphy vs.
videography=703.371+1.404 vs. 578.44314.652 min per night,
P=1.771x10"%; transitional sleep: actigraphy vS.
videography=67.157£2.915 vs. 199.429+6.009 min per night,
P=3.626x10"%; relaxed sleep: actigraphy VS.
videography=636.214+3.889 vs. 379.014+8.706 min per night,
P=7.009%10"").

The epoch-by-epoch analysis results are presented in
Supplementary Table S2 and Table 1 and relate to the
duration of epochs and percentages for all dark period
recordings in all monkeys. The maximum percentage
agreement between the two methods relative to the state of
sleep reached 99.852%. Of the 40 491 epochs scored for
sleep by videography, 40 431 (99.852%) were correctly
scored by actigraphy analysis and 60 (0.148%) were allocated
to the state of wake. Of the 9 909 wake epochs, however, only
1 104 (11.141%) were correctly scored by actigraphy, with 8
805 epochs (88.859%) scored as sleep. This demonstrates
that actigraphic analysis can correctly score the state of sleep
but may not correctly score the state of wakefulness.

To further determine whether actigraphy is suitable for
scoring states of sleep. As shown in Table 1, actigraphic
analysis was preferable for scoring the state of relaxed sleep.
Of the 26 531 relaxed sleep epochs, 25 886 (97.569%) were
correctly scored using actigraphy, with 34 (0.128%) and 611
epochs (2.303%) respectively scored as the state of wake and
transitional sleep. Actigraphy also correctly scored 800 epochs
(5.731%) as transitional sleep out of the 13 960 epochs of
transitional sleep obtained from videographic analysis. Of the
remaining inconsistently scored transitional sleep epochs, 13
134 (94.083%) were allocated to relaxed sleep and 26
(0.186%) were allocated to wakefulness.

In the present study, actigraphy constituted a reliable



method for scoring the state of sleep in monkeys (Andersen et
al., 2013; Berro et al., 2016; Golub & Hogrefe, 2016; Kantha &
Suzuki, 2006), showing a significant correlation in comparison
with states obtained by videography. Epoch-by-epoch analysis
provided an exact measure of the percentage agreement
between the two methods, which showed that actigraphy
could accurately score the state of sleep (99.852%). This is
consistent with results previously obtained in humans, with

Figure 1 Locomotor activity, correlations, and Bland-Altman plots

actigraphy demonstrating 93% and 94% sensitivity in
measuring sleep compared with PSG (Niel et al., 2019;
Yavuz-Kodat et al., 2019). In four species of lemur, Cramer’s
V correlation between actigraphy-classified sleep and
videography-classified sleep revealed highly consistent results
(Melvin et al., 2019). Here, although the sensitivity of
actigraphy in detecting sleep was very high, it performed
poorly in detecting wakefulness, with only 11.141% of epochs

A: Mean locomotor activity for each monkey measured by Actical monitors (n=10). Activity data were collected over a seven-day period and are
presented as means over that period. Lights were on at 0800 h and off at 2000 h. B: Correlations between sleep scores from actigraphy and
videography. Four states were scored by actigraphy (X-axis: Actigraphy) and videography analysis (Y-axis: Videography), respectively, including
wake, sleep, transitional sleep, and relaxed sleep. C: Bland-Altman plots for actigraphy vs. videography. X axes represent average of two methods
((actigraphy+videography)/2) and Y axes show differences between two paired measurements (actigraphy-videography), including wake, sleep,
transitional sleep, and relaxed sleep. Solid lines show mean differences between actigraphy and videography measurements; dotted lines represent
95% limits of agreement, from —1.96 SD (standard deviation) to +1.96 SD.

Table 1 Epoch-by-epoch analysis for each state (including wake, transitional sleep, and relaxed sleep) showing total duration (min) and
corresponding percentage (%) of epochs scored in agreement (diagonal from left to right) between videography (rows) and actigraphy
(columns) methods and those scored differently by actigraphy analysis

Min %
State Wake Transitional sleep Relaxed sleep Wake Transitional sleep Relaxed sleep
Wake 1104 3290 5515 11.141  33.202 55.656
Transitional sleep 26 800 13134 0.186 5.731 94.083
Relaxed sleep 34 611 25 886 0.128 2.303 97.569
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correctly identified. This accords with previous research
comparing actigraphy and polysomnography in older adults
(Sivertsen et al., 2006). These results suggest that actigraphy
may show poor sensitivity in detecting wakefulness during the
sleep-period (Terrill et al., 2010). This may be because the
monitors were mounted to the monkeys’ necks, and small
movements may not be detected, such as hand movements
involving no changes of position. As a result, 8 805 epochs
(88.859%) were wrongly scored as the state of sleep.

Further epoch-by-epoch analysis indicated that actigraphy
was more suitable for scoring the state of relaxed sleep, with
97.569% of relaxed sleep (25 866 epochs) correctly identified
in comparison with videography. Only 34 (0.128%) and 611
epochs (2.303%) were differently interpreted as wake and
transitional sleep, respectively, compared with videographic
analysis. One of the most important reasons for this result is
that relaxed sleep was scored when the monkeys exhibited
neither body nor limb movements and the activity monitor was
highly sensitive to detecting the state of rest. When the
monitor did not detect any movements within 1 min, this
minute was scored as relaxed sleep. In contrast, the
actigraphy method could not easily discriminate between the
state of relaxed and transitional sleep (800 epochs,i.e.,
5.731%). Although a monkey may have exhibited one or two
movements within 1 min, the monitor could not detect such
movement, and thus, 94.083% of transitional sleep (13 134
epochs) was incorrectly allocated to the state of relaxed sleep.
Also, a tiny fraction of transitional sleep was interpreted as
wakefulness (26 epochs, i.e., 0.186%).

In view of the differences between the two sleep scoring
methods, compared with videographic analysis, actigraphy
underestimated the durations of wake and transitional sleep
by 88.253% and 66.325%, respectively, but overestimated the
durations of sleep and relaxed sleep by 21.597% and
67.860%, respectively. One reason for this is because the
neck-attached monitors showed poor sensitivity to slight
movements by the monkeys. Most of the time, the monitors
could not detect any movements, and thus interpreted the
state of wakefulness (23 movements within 1 min) and
transitional sleep (1-2 movements in 1 min) as either sleep or
relaxed sleep. A wrist-attached monitor would likely provide
more accurate results and is a commonly used site for sleep
monitoring (Mathie et al., 2004). Periods of sleep are usually
accompanied by minimal movement, with relatively more
movements occurring during the periods of wakefulness,
which can be better discriminated by wrist actigraphy (Slater
et al., 2015; Tryon, 1996). However, certain populations, such
as children with neurodevelopmental disorders, may have
difficulty tolerating wrist placement (Adkins et al., 2012). In this
case, other locations have also been utilized to measure
sleep, including the leg (Middelkoop et al., 1997), waist
(Enomoto et al., 2009; Paavonen et al., 2002), shoulder
(Adkins et al., 2012), and hip (Zinkhan et al., 2014). Although
most validation studies comparing actigraphy to the gold
standard measure of polysomnography have used non-
dominant wrist placement, other locations can be used if the
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wrist is not available or subjects are unable to tolerate wrist
placement. In the present study, the neck location was utilized
to avoid possible adverse effects on daily routine and allow for
longer-term wear. The new generation of accelerometers
provides high temporal and intensity resolution, allowing the
detection of tiny body movements and identification of pulse
waves when attached to the wrist (Zschocke et al., 2019).
Even when worn on the wrist or hip, these devices provide
data that can be used to track respiratory rate throughout the
night (Zinkhan & Kantelhardt, 2016). As such, these high-
resolution accelerometers should detect tiny motions, even
when attached to the neck, and triaxial recordings may be
able to distinguish whether the monkey is in an upright
position or lying down. Algorithms are especially important for
the deduction of sleep measures. At present, however, most
algorithms have been developed and validated for wrist
measurements. When accelerometers are placed at the hip,
mean PSG bias is larger, and there is a distinct dependency in
differences of magnitude of respective sleep measures
compared to wrist measurements (Zinkhan & Kantelhardt,
2016). Thus, new algorithms need to be developed to adapt to
the different placements of accelerometers.

Although the actigraphic approach showed poor sensitivity
for detecting wakefulness in the current study, it could play a
supportive role in the elucidation of sleep differences between
control and specific disease model monkeys. In comparison
with EEG, this method does not require deep or subcutaneous
implantation of electrodes, and thus is almost noninvasive,
which could help reduce adverse effects on monkeys, such as
infection from surgery. In addition, EEG and PSG equipment
is relatively expensive and may be difficult to use under long
recording intervals and large sample sizes. Although
videography is noninvasive and can allow observations of
behaviors in naturally sleeping monkeys (Kripke et al., 1968;
Weitzman et al., 1965), it requires greater subjectivity and
considerable human labor and time costs. In consideration of
the above-mentioned factors and the results reported in this
study, the use of actigraphy for scoring sleep (especially
relaxed sleep) shows potential for future research on sleep in
NHPs. The behavioral criteria and approach were validated in
this study and could be considered as a complementary
technique to conventional EEG and/or videography analysis
for sleep studies in NHPs.
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