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ABSTRACT

Accumulating studies have been conducted to
identify risk genes and relevant biological
mechanisms underlying major depressive disorder
(MDD). In particular, transcriptomic analyses in brain
regions engaged in cognitive and emotional
processes, e.g., the dorsolateral prefrontal cortex
(DLPFC), have provided essential insights. Based on
three independent DLPFC RNA-seq datasets of 79
MDD patients and 75 healthy controls, we performed
differential expression analyses using two alternative
approaches for cross-validation. We also conducted
transcriptomic analyses in mice undergoing chronic
variable stress (CVS) and chronic social defeat
stress (CSDS). We identified 12 differentially
expressed genes (DEGs) through both analytical
methods in MDD patients, the majority of which were
also dysregulated in stressed mice. Notably, the
mRNA level of the immediate early gene FOS (Fos
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proto-oncogene) was significantly decreased in both
MDD patients and CVS-exposed mice, and CSDS-
susceptible mice exhibited a greater reduction in Fos
expression compared to resilient mice. These
findings suggest the potential key roles of this gene
in the pathogenesis of MDD related to stress
exposure. Altered transcriptomes in the DLPFC of
MDD patients might be, at least partially, the result of
stress exposure, supporting that stress is a primary
risk factor for MDD.

Keywords: Major depressive disorder; Stressed
mice; Dorsolateral prefrontal cortex; Transcriptomic
analysis; FOS
INTRODUCTION

Major depressive disorder (MDD) is a devastating mental
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illness with a lifetime prevalence of around 6.8%-13.0%
worldwide (Hasin et al., 2005; Malhi & Mann, 2018; Otte et al.,
2016). During the past few decades, numerous studies have
been carried out to define its biological basis, pathological
mechanisms, clinical biomarkers, and effective therapies
(Kang et al., 2012; Le-Niculescu et al., 2009; Li et al., 20203;
Liu et al., 2020; Lu et al., 2020; Ota et al., 2014; Xiao et al.,
2018). So far, several hypotheses about its pathogenesis have
been proposed and tested (Duman & Aghajanian, 2012;
Duman et al., 2016; Penzes et al., 2011), and recent genome-
wide association studies (GWAS) have also identified genetic
loci linked with MDD (Howard et al., 2019; Wray et al., 2018).
While these studies have promoted our understanding of this
illness, many questions remain unanswered. According to
epidemiological analyses, the heritability of MDD is only
moderate (Sullivan et al., 2000), and environmental factors,
such as negative life events and stressful experiences, are
primary risk factors that cannot be easily tested through
GWAS. For example, previous studies have reported that
mice exposed to stress showed depressive-like symptoms
(Bagot et al., 2016; Cheng et al., 2018; Hodes et al., 2015),
and early attachment-figure separation can increase risk for
later depression (Hennessy et al., 2010). Therefore, the
complexity of MDD pathogenesis requires investigations using
data beyond those containing only genotype information.
Transcriptomic analyses of human tissues allow alternative
studies to search for MDD biological mechanisms, as mRNA
expression of genes is mediated by the combinatorial effects
of genetic variations (Westra et al., 2013; Wright et al., 2014),
stress exposures (Ota et al., 2014), and other factors
(Charlesworth et al., 2010; Jansen et al., 2014). In recent
years, transcriptomic analyses in brain and peripheral blood
tissues have reported particularly intriguing genes and
pathways relevant to MDD, which might be further applied as
clinical biomarkers or potential drug targets (Jansen et al.,
2016; Kim et al., 2016; Labonté et al., 2017; Leday et al.,
2018; Li et al., 2013; Mostafavi et al., 2014; Pantazatos et al.,
2017; Ramaker et al., 2017; Scarpa et al., 2018; Seney et al.,
2018; Sequeira et al., 2007; Wang et al., 2008; Wittenberg et
al., 2020). However, MDD is a polygenic illness originating
from pathological alterations in the brain, and the sample sizes
of current transcriptomic analyses in human brains are still too
small to define sufficient dysregulated genes and pathways.
Here, we integrated independent RNA-seq datasets of
dorsolateral prefrontal cortex (DLPFC) tissues from MDD
patients, as well as GWAS statistics, expression quantitative
trait loci (eQTL) in the DLPFC of humans, and RNA-seq data
in the ventromedial prefrontal cortex (vmPFC) of mice
exposed to chronic stress. We conducted differential
expression analysis, weighted gene co-expression network
analysis (WGCNA), gene set enrichment analysis (GSEA),
summary data-based Mendelian randomization (SMR)
analysis, and rank-rank hypergeometric overlap (RRHO).
These analyses yielded dysregulated genes, co-expression
modules, and transcriptional networks associated with human
MDD, many of which were also reproduced in stressed mice,

thus providing insights into the pathogenesis of depression.

MATERIALS AND METHODS

All protocols and methods were approved by the Institutional
Review Board of the Kunming Institute of Zoology, Chinese
Academy of Sciences, China.

Differential expression analysis using DLPFC RNA-seq
data in MDD patients and controls

RNA-seq datasets: Three independent raw RNA-seq
datasets (SRA files) were downloaded from the Gene
Expression Omnibus (GEO) database. The first GEO dataset
(GSE102556) included human postmortem brain DLPFC
(BA8/9) tissues from 26 MDD cases and 22 matched controls
from the Douglas Bell Canada Brain Bank (DBCBQ; Douglas
Mental Health Institute, Canada) (Labonté et al., 2017). All
subjects in the GSE102556 dataset were of European
ancestry and French-Canadian descent, and their average
age of death was 47. As described by the authors, “diagnoses
were obtained using DSM-IV criteria by means of SCID-I
interviews adapted for psychological autopsies”, and the
samples were “barcoded for multiplexing and sequenced at 50
bp paired-end on lllumina Hi-Seq 2500” (Labonté et al., 2017).
The second GEO dataset (GSE101521) comprised brain
tissues from 30 DSM-IV-defined MDD cases and 29 controls
collected at the Division of Molecular Imaging and
Neuropathology, New York State Psychiatric Institute and
Columbia University (Pantazatos et al., 2017). In this dataset,
RNA was extracted from DLPFC (BA9) tissues, and paired-
end sequencing for total RNA was performed on an lllumina
Hi-Seq 2500 with a 100 bp read length (Pantazatos et al.,
2017).

The third GEO dataset (GSE80655) consisted of the middle
part of the superior frontal gyrus (DLPFC, BA9) from 23 MDD
patients and 24 healthy controls (Ramaker et al., 2017). These
brain samples were collected under the Brain Donor Program
at the University of California, Irvine, Department of Psychiatry
and Human Behavior. Total RNA was extracted and
sequenced on an lllumina Hi-Seq 2000 with a paired-end 50
bp read length.

Quality control analysis: Quality control, alignment, and
gene-expression quantification were performed through the
same procedures under consistent criteria for all three RNA-
seq datasets. In brief, Trimmomatic v0.36 was used to
examine the sequencing quality and trim reads (Bolger et al.,
2014). Clean paired-end reads were aligned to the genome
GRCh38 using Hisat2 (v2.1.0) (Kim et al., 2015). The gene-
level read counts were quantified based on the gene
annotation file (GRCh38.91) using featureCounts and
transcript per million (TPM) was calculated to quantify gene
expression levels (Liao et al., 2014). Genes with an average
TPM of <1.0 or non-protein coding were excluded from
subsequent analyses. Finally, quality control, alignment, and
gene-expression quantification yielded 12 928 protein-coding
genes with TPM=1.0 for subsequent analyses. To merge the
three datasets, maximize statistical power, and identify
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differentially expressed genes (DEGs), we simultaneously
applied two different approaches (i.e., merged analysis and
meta-analysis in the following discussion).

Identification of dysregulated genes using merged
analysis: The TPM expression matrices from three different
GEO datasets were merged and transformed as log,(TPM+1),
and then surrogate variables (SVs) were estimated using the
sva function (v3.28.0) (Leek et al, 2020). The
removeBatchEffect function in limma (v3.36.5) was used to
remove batch effects and adjust for known covariates (e.g.,
sex, age, postmortem interval (PMI), RNA integrity number
(RIN)) and to estimate SVs and the top three expression
principal components (PCs) (Ritchie et al., 2015). Normalized
TPM matrices were proceeded using linear fit in the limma
package to conduct differential expression analysis. The
log,(fold-change) (log,FC) values and P-values of each gene
were computed using the eBays function in the limma
package. Genes with a false discovery rate (FDR)<0.1 and
fold-change=1.2 were defined as DEGs following previous
studies (Li et al., 2020b; Xu et al., 2018).

Identification of dysregulated genes using meta-
analysis: Differential expression analysis based on read
counts was also performed. Briefly, the likelihood ratio test
(LRT) in the DESeq2 package (v1.20.0) (Love et al., 2014)
was carried out for each dataset. For the LRT, known
covariates (e.g., sex, age, PMI, RIN) were adjusted for each
study, and the LRT statistics in the three datasets were used
for Liptak-Stouffer's meta-analysis (Laoutidis & Luckhaus,
2015). Genes with a meta-analysis FDR<0.1 and fold-change=
1.2 were considered DEGs.

Correlation analysis of two methods for calculations of
DEGs: To increase the reliability of DEGs, Pearson’s
correlation and sign tests were conducted using log,(fold-
change) derived from both the merged and meta-analyses.
DEGs identified through both approaches were used for
further analyses.

Weighted gene co-expression network analysis (WGCNA)
Based on the normalized-TPM matrices of 12 928 protein-
coding genes in 79 MDD patients and 75 healthy controls from
all three datasets, unsigned co-expression gene modules
were constructed using WGCNA (v1.66). This is a common
method for identifying clusters of highly correlated genes
(Langfelder & Horvath, 2008). Under the assumption that a
gene co-expression network is scale-free, this method uses a
soft threshold to estimate the weights of edges between two
random genes. It is considered more robust than an
unweighted network (i.e., dichotomizing connection between
genes, 1 represents co-expression, 0 represents non-
coexpression) in identifying co-expression patterns (Zhang &
Horvath, 2005). Briefly, we calculated the network adjacency
and topological overlap matrix (TOM) using an appropriate
soft-threshold power after analysis of scale-free topology for
multiple soft-threshold powers. According to the default
parameters, the appropriate soft-threshold power was 5,
based on which the R? of scale topology fit equaled 0.88.
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Gene clusters were plotted based on TOM dissimilarity.
Modules whose dissimilarity of eigengenes was less than 0.1
were merged using the mergeCloseModules function after
dynamic modules were generated. The module eigengenes
(first PC) as well as the associations between modules and
diagnostic status were examined using the moduleEigengenes
function. Modules with an adjusted P<0.05 were considered
significantly associated with the disorder. In addition, based on
the weight of co-expression between any two genes in a
specific module, we calculated the co-expression scores of
each gene with the remaining genes in the same module

Y Wi
n

between a specific gene and other genes in the same module
and n is the number of genes in the tested module minus 1.

using

to define the hub genes, where w is the weight

Protein-protein interactions (PPls), biological processes,
and pathway analyses

Physical PPIs among DEGs were constructed using the
STRING database (v11.0) (Szklarczyk et al., 2017). To
examine whether genes were enriched in any biological
processes (BP) potentially relevant to MDD pathogenesis,
functional prediction was performed using Gene Ontology
(GO) annotation with clusterProfiler (v3.8.1) (Yu et al., 2012),
and GO BP terms with an FDR-corrected P<0.05 were
considered statistically significant. Semantic  similarity
analyses were then conducted with GOSemSim (v2.6.2) (Yu
et al., 2010) to narrow down the enriched GO terms based on
their similarity with each other (similarity=0.5 was considered
highly similar).

SMR analysis using depression GWAS and DLPFC eQTL
datasets

To identify genes whose MRNA expression levels were
affected by genetic risk of MDD, we integrated the MDD
GWAS statistics (Wray et al., 2018) and human DLPFC RNA-
seq eQTL data (Gandal et al., 2018b), and performed SMR
analysis (v1.03) (Zhu et al., 2016). This method was
developed based on the Mendelian randomization (MR)
framework (Smith & Ebrahim, 2003; Smith & Hemani, 2014),
which considers genetic variations, mMRNA expression levels
of genes, and traits as the instrumental variable, exposure
variable, and outcome, respectively. Genome-wide statistics of
MDD GWAS (including 59 851 cases and 113 154 controls)
were retrieved from recent study (Wray et al., 2018), and
summary statistics of RNA-seq eQTL (calculated by adjusting
for 100 hidden covariate factors) of 1 387 individuals were
obtained from the PsychENCODE dataset at http://resource.
psychencode.org/ (Gandal et al., 2018b). During SMR
analysis, the eQTL P-value threshold was set at 0.01, and
genes with multi-single nucleotide polymorphism (SNP)-based
SMR P-values lower than 0.05 were empirically considered to
be potential MDD risk genes (Wu et al., 2018).

Differential expression analysis using vmPFC RNA-seq
data in stressed mice

We downloaded the raw vmPFC RNA-seq data of stressed
mice from GSE102556 (Labonté et al., 2017). This study



included 19 control mice and 19 mice exposed to chronic
variable stress (CVS) for 21 days. All CVS-stressed mice
exhibited a range of depression- and anxiety-related
behavioral abnormalities. The brain vmPFC tissues of these
mice were dissected, and their transcriptomes were examined
through 50 bp paired-end RNA-sequencing on an lllumina Hi-
Seq 2500.

We also obtained the raw vmPFC RNA-seq data of stressed
mice from GSE81672 (Bagot et al., 2017). In this study, mice
underwent chronic social defeat stress (CSDS), and were
further characterized as either susceptible (n=3) or resilient
(n=4) according to their behavioral indices. Specifically, the
susceptible mice showed depression- and anxiety-related
behaviors following CSDS exposure. A control group
comprising mice without CSDS exposure were also included
(n=5). RNA-seq of the vmPFC tissues of these mice was
performed on an lllumina Hi-Seq 2500 with 50 bp paired-end
reads.

For both murine brain RNA-seq datasets, we conducted
quality control, alignment, and gene-expression quantification
using a similar pipeline as that applied for the human data,
with the reference genome replaced by GRCm38. As these
data were obtained from inbred mice under strict experimental
control, there were no covariates to be adjusted for in
comparison with the human data. We therefore used the Wald
test in the DESeqg2 package to perform differential expression
analysis between stressed and control mice.

Rank-rank hypergeometric overlap (RRHO)

The extent of overlap of dysregulated genes highlighted in
MDD patients and stressed mice were examined by
performing unbiased RRHO (v1.26.0), as described previously
(Bagot et al., 2016; Cahill et al., 2018; Plaisier et al., 2010;
Seney et al., 2018; Stein et al., 2014). This is a threshold-free
method that estimates overlap between two ranked lists of
genes. To perform RRHO analysis, the two gene sets were
firstly ranked at the genome-wide scale according to their
-logqg(P-value) and direction of change revealed by
differential expression analyses. Secondly, a series of
hypergeometric P-values were calculated for each gene by
sliding the rank threshold to estimate the significance of
overlapping genes above the expected threshold at each
ranking site. Lastly, the hypergeometric P-values of genes
were plotted on a heatmap.

RESULTS

Differential expression analysis at single gene level in
depressed patients

Three independent RNA-seq datasets of human DLPFC
tissues, including a total of 79 MDD patients and 75 healthy
controls, were utilized. After quality control analysis, 12 928
protein-coding genes showing TPM=21.0 were used for
subsequent analyses. We firstly merged the TPM matrices of
all individuals from all three datasets, and then normalized the
data by adjusting for batch effects (by distinct studies), known

covariates (i.e., sex, pH and PMI), SVs (representing unknown
factors), and the top three expression PCs. The PC plot of
normalized expression matrices is presented in Figure 1A,
which showed generally consistent gene expression patterns
across individuals from different studies. We then conducted
differential expression analysis based on the normalized TPM
matrices in the merged datasets using linear fit in the limma
package. In total, 2 277 genes showed nominal significance
(P<0.05; Supplementary Table S1), and 19 DEGs were
identified (FDR<0.1, fold-change=1.2; Figure 1B).

We also calculated the DEGs based on read counts. As
described in the methods section, differential expression
analysis was performed in each dataset using the LTR method
in DESeq2 (adjusting for covariates), and a meta-analysis of
the three datasets was then carried out using the Liptak-
Stouffer's method. This approach identified 904 genes with
nominal significance (meta-analysis P<0.05; Supplementary
Table S2) and 20 DEGs (meta-analysis FDR<0.1, fold-
change=1.2; Figure 1C).

Pearson’s correlation analysis using genome-wide statistics
also showed that the correlation coefficients of log,(fold-
change) obtained via both methods were highly consistent
(Pearson’s r=0.81; Figure 1D). Among the 12 928 genes
included in the analysis, 10 273 showed skewed expression
levels compared with the controls in the same direction using
both methods (sign test P<2.2x107'). Notably, mRNA levels
in 710 genes were nominally altered (P<0.05) compared with
controls using both analytical methods, with their statistics
being highly consistent (log,FC, Pearson’s r=0.95;
Supplementary Table S3). Twelve genes were further
identified as significant DEGs in both analyses (i.e., FOS,
EGR1, FOSB, EGR2, NR4A1, NR4A3, RLBP1, CCL3L3,
PLA2G5, TRIB1, CYR61, and CH25H; Table 1; Figure 1E).
Notably, many of these DEGs (e.g., FOS, FOSB, EGR1 and
EGR2) belong to the family of immediate early genes (IEGs)
that respond rapidly and transiently to cellular stimuli and
influence neuronal physiology (Curran & Franza, 1988; Gallo
et al., 2018). Here, their protein products formed a dense PPI
network (Figure 1F).

Construction of gene co-expression modules in brain
DLPFC and identification of MDD-associated modules

Examining transcriptional networks associated with MDD
should provide insights into genes facilitating disease-related
alterations (Gandal et al., 2018a; Gerring et al., 2019). We
constructed co-expression modules in 154 DLPFC samples
(79 MDD patients and 75 healthy controls) through WGCNA
using normalized expression (after removing batch effects,
known covariates, SVs, and top three PCs) in the 12 928
protein-coding genes. We performed hierarchical clustering of
genes using the dynamic tree cut approach and then merged
modules with  dissimilarities<0.1 according to their
eigengenes. We identified 47 co-expression modules, except
for the grey module, which consisted of unclassified genes
(Figure 2A; Supplementary Table S4). To estimate whether a
group of genes within a module exhibited case-control
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Figure 1 Differential expression analysis in depressed patients

A: PC plot of normalized expression matrices in three RNA-seq datasets. B: Volcano plot of genome-wide results using merged analysis. Red dots
indicate DEGs (FDR<0.1 and fold-change=1.2). C: Volcano plot of genome-wide results using meta-analysis. Red dots indicate DEGs (FDR<0.1
and fold-change=>1.2). D: Correlation analysis of log,FC derived from both analytical methods. E: Differential expression analysis of 12 DEGs
identified in MDD patients by both methods. First two columns show results in MDD patients, last three columns show results in stressed mice. Blue
indicates down-regulated genes, red indicates up-regulated genes in corresponding analysis. F: Eight out of 12 DEGs showed direct protein-protein
interactions (PPIs). FC: Fold-change; FDR: False discovery rate; CVS: Chronic variable stress; CSDS: Chronic social defeat stress.

differences, we calculated module eigengenes (first PC), and
found that three modules were significantly associated with
diagnosis of MDD after multiple corrections (P<0.05/47;
Figure 2B; Supplementary Table S5), i.e., skyblue3
(P=1.36x10"%, module size=97), ivory (P=5.03x10"*, module
size=85), and mediumpurple3 (P=9.09x1074, module size=91).
For these three MDD-associated modules, Supplementary
Table S6 shows the co-expression scores of each gene with
the remaining genes in the same module, and Figure 2C
highlights the top 20 hub genes in each module.

We then investigated whether genes in each MDD-
associated module were enriched in any biological processes.
GSEA showed that genes in the skyblue3 module were
significantly enriched in the GO terms “regulation of synapse
structure or activity”, “regulation of synapse organization”,
“dendritic spine organization”, and “circadian rhythm”; genes in
the ivory module were significantly enriched in “learning”,
“rhythmic process”, and “response to steroid hormone” (FDR<
0.05; Figure 2D); and genes in mediumpurple3 module were
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not enriched in any biological processes.

We also analyzed the enrichment of DEGs highlighted
through single gene level analyses (FDR<0.1, fold-change=
1.2) in these modules, and found that many DEGs (FOS,
EGR1, EGR2, NR4A3, NR4A1, CYR61, and CH25H) were
included in the ivory module. This module also contained
many genes that showed nominal significance in differential
expression analysis between cases and controls (P<0.05;
Supplementary Table S7). Furthermore, GO analysis found
that these dysregulated genes were significantly enriched in
“regulation of synaptic plasticity”, “learning or memory”,
“regulation of neuron death”, “response to calcium ion”,
“positive regulation of inflammatory response”, ‘“rhythmic
process”, and “response to steroid hormone” (FDR<0.05;
Figure 2D).

Integrative analysis of DEGs with GWAS risk genes in
depression

We investigated whether DEGs in the DLPFC of MDD patients
were associated with genetic risk of this illness by performing



Table 1 Identification of 12 differentially expressed genes (DEGs) in human MDD and their associations in stressed mice

CSDS resilient

CSDS susceptible

log,FC
-1.238

-0.263
N/A

CVS mice

Mouse

Meta-analysis

Merged analysis

Human gene
Ensembl ID

WGCNA module

log,FC  P-value

P-value

log,FC P-value FDR Name log,FC P-value

FDR

log,FC P-value

Name

Ivory

-0.735 0.156

0.581
N/A

2.83E-02
0.730
N/A

-0.917 2.13E-04
-0.542 0.070
N/A

-0.982 3.25E-07 4.21E-03 Fos

-0.569 3.35E-04 4.67E-02
-0.346 5.76E-04 5.56E-02
-0.491 3.54E-05 2.50E-02
-0.448 1.32E-04 3.61E-02
-0.378 1.08E-03 6.65E-02
-0.266 1.65E-04 3.61E-02
-0.435 1.92E-04 3.86E-02
-0.425 1.16E-04 3.60E-02
-0.330 1.54E-03 7.65E-02

-0.284 7.47E-04 6.15E-02

ENSG00000170345 FOS

Ivory

0.235

-0.755 1.02E-06 6.57E-03 Ch25h
-0.808 4.88E-06 2.10E-02 N/A

ENSG00000138135 CH25H

Ivory

N/A

N/A

ENSG00000276085 CCL3L3
ENSG00000122877 EGR2

ENSG00000142871

-0.465 0.434 Ivory

0.155

-0.950
-0.568
-0.330
-0.358
-0.549

-0.995 2.80E-04
-0.872 1.59E-03
-0.311 4.67E-03
-0.564 2.02E-06
-0.465 7.07E-03

-0.712 1.75E-05 4.31E-02 Egr2

-0.657 2.00E-05 4.31E-02

-0.518 1.43E-02 Ivory

2.05E-02
2.77E-02

0.271

Cyré1

CYR61

-0.309 1.65E-02 Skyblue3

-0.180 0.558
-0.329 0.189

Trib1

-0.340 5.45E-05 6.98E-02

ENSG00000173334 TRIB1

Ivory

-0.526 7.01E-05 6.98E-02 Egr1

ENSG00000120738 EGR1

Ivory

0.056
0.996
0.322

-0.556 7.62E-05 7.03E-02 Nr4a1

ENSG00000123358 NR4A1

Ivory

0.215 0.593
-0.019 0.824

-0.045 0.771

-0.382 3.39E-04 0.002

-0.086 0.195

-0.500 9.03E-05 7.30E-02 Nr4a3
-0.414 1.08E-04 7.90E-02 RIbp1

-0.790 1.10E-04 7.90E-02 Fosb
-0.414 1.36E-04 8.36E-02 Pla2g5

ENSG00000119508 NR4A3

Brown

-0.108

-0.275
-0.137

ENSG00000140522 RLBP1
ENSG00000125740 FOSB

Lightyellow

0.111

-0.830 3.44E-06
-0.166 0.257

-0.353 1.95E-03 8.18E-02

-0.341 0.102 Brown

0.528

-0.325 2.89E-05 2.45E-02

ENSG00000127472 PLA2G5

FC: Fold-change; FDR: False discovery rate; CVS: Chronic variable stress; CSDS: Chronic social defeat stress. N/A: Not available.

overlap analysis between DEGs and genetic risk genes. In
brief, based on SMR analysis and integration of MDD GWAS
statistics and human DLPFC eQTL results (Gandal et al.,
2018b; Wray et al.,, 2018), we found that the mRNA
expression levels of 490 genes in the DLPFC were nominally
associated with GWAS genetic risk of MDD (SMR P<0.05,
Supplementary Table S8). However, none of the 12 DEGs
showed nominal associations in SMR analysis. We further
examined whether any genes were included in both the 490
genetic risk genes and 710 nominal DEGs (P<0.05); however,
only nine genes showed consistent expression change
direction based on genetic risk and diagnostic effects
(Supplementary Table S9).

Differential expression analysis of mice under chronic
variable stress
Stressful and negative life events are major environmental risk
factors of MDD. Thus, it is of great interest to examine
whether stress exposure can lead to MDD-relevant
transcriptomic alterations in brain tissues. Due to the lack of
human brain transcriptomic information with stress exposure
as the only environmental stimuli, we analyzed the
transcriptomes of vmPFC tissues from mice under CVS
(Labonté et al., 2017), which included 19 CVS-stressed mice
and 19 unstressed mice. We then performed differential
expression analysis on 11 695 protein-coding genes
expressed in both humans and mice to gain insights into
stress-correlated brain transcriptomic characteristics. The
RRHO test revealed substantial overlap of down-regulated
genes in CVS-stressed mice and MDD patients compared
with their respective controls (maximum Fisher's exact test
(FET) P<1x107%; Figure 3A, B), especially the significantly
down-regulated genes in humans identified through meta-
analysis. These results suggest that analyses of murine brain
transcriptomes undergoing CVS should provide valuable
information for the brain transcriptomes of human MDD.
Supplementary Table S10 lists the genes nominally
dysregulated in both MDD patients and CVS-stressed mice
(P<0.05). Among the 12 DEGs in MDD patients defined by
both merged analysis and meta-analysis (11 genes were
covered by RNA-seq analysis in mice), eight genes also
showed consistent and nominal significance in CVS mice (i.e.,
FOS, EGR1, FOSB, EGR2, NR4A1, NR4A3, TRIB1, and
CYRG61; Figure 1E; Table 1). These data together suggest a
significant overlap of down-regulated genes in MDD patients
and CVS-stressed mice.

Differential expression analysis of mice under chronic
social defeat stress

We also analyzed the transcriptomes of vmPFC tissues from
mice under CSDS (Bagot et al., 2017). As mentioned earlier,
the stressed mice were further characterized as either
susceptible or resilient, with susceptible mice showing
depression- and anxiety-related behaviors following CSDS
exposure. Supplementary Table S11 shows whether the 710
nominal DEGs in humans were also differentially expressed in
CSDS-susceptible and -resilient mice. Our analysis revealed
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Figure 2 Gene co-expression modules in DLPFC of brain, MDD-associated modules, and biological pathway enrichment

A: In total, 47 co-expression modules were identified. B: Three co-expression modules were significantly associated with MDD after multiple
corrections (i.e., P<0.05/47), i.e., skyblue3, ivory, and mediumpurple3, respectively. C: Number of genes in three modules was 97, 85, and 91,
respectively. Top 5% of gene-gene links in respective modules are displayed according to weights calculated by WGCNA. In addition, based on co-

expression scores of each gene in three MDD-associated modules, the top 20 genes are in red. D: Gene Ontology (GO) analysis results for genes

in skyblue3 and ivory modules as well as nominally dysregulated genes in ivory module.

the opposing patterns of gene expression alterations in
humans (i.e., dysregulated genes identified using meta-
analysis) and CSDS-resilient mice (enriched dots at top-left
corner in heatmap plot) (Figure 3B), and also highlighted a
significant overlap in genes down-regulated in both MDD
patients (i.e., dysregulated genes identified using meta-
analysis) and CSDS-susceptible mice (enriched dots at top-
right corner in heatmap plot) (maximum FET P<1x107%;
Figure 3B). These results suggest that susceptibility to CSDS-
induced behavioral impairments was likely affected by MDD-
relevant genes, confirming the putative roles of stress
exposure in the pathogenesis of MDD.

We then examined whether the 12 DEGs in depressed
patients (11 genes covered by RNA-seq analysis in mice)
were also correlated with depression- and anxiety-like
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symptoms in CSDS mice. However, the P-values of most
genes did not reach nominal significance, probably due to
limited statistical power. Furthermore, only three genes (i.e.,
FOS, TRIB1, and CYR61; Figure 1E; Table 1) showed
nominal expression differences in CSDS-susceptible mice
compared with control mice (P<0.05). The expression levels of
FOS did not significantly differ between CSDS-resilient mice
and control mice (P=0.156; Table 1), whereas the expression
levels of TRIB1 and CYR61 were nominally significant in
CSDS-resilient mice, although their P-values were smaller
than those in CSDS-susceptible mice (Figure 1E; Table 1).
Overall, despite some caveats likely caused by the limited
sample size and unique characteristics of CSDS-resilient
mice, analysis of CSDS-susceptible mice obtained similar
results as those of CVS mice, further supporting the significant



Figure 3 Comparison analysis of dysregulated genes between MDD patients and stressed mice

A: Schematic indicating interpretation of Rank-Rank Hypergeometric Overlap (RRHO) test plots. Signals in bottom left quadrant and top right
quadrant represent an overlap of up-regulated and down-regulated genes found in both MDD patients and stressed mice, respectively. Signals in
top left quadrant represent genes up-regulated in MDD patients but down-regulated in stressed mice; signals in bottom right quadrant represent
genes down-regulated in MDD patients but up-regulated in stressed mice. Degree of significance is depicted in color bar of RRHO maps. B: RRHO
maps comparing transcriptional profiles of MDD patients and stressed mice. CVS: Chronic variable stress; CSDS: Chronic social defeat stress.

overlap of down-regulated genes in depressed patients and
stressed mice.

DISCUSSION

Extensive transcriptomic analyses of MDD patients have been
conducted based on currently available microarray or RNA-
seq datasets in brain and peripheral tissues. While previous
studies have identified several dysregulated genes,
satisfactory consistency between studies is lacking, calling for
further investigations using larger samples. In the present
study, we conducted differential expression analysis using
RNA-seq data from three independent cohorts of MDD
patients and controls. Although our sample size is smaller
than that used for transcriptomic analyses of other psychiatric
disorders (Gandal et al., 2018b), the total sample size is larger
than most previous MDD brain transcriptomic studies (Kim et
al., 2016; Labonté et al., 2017; Li et al., 2013; Pantazatos et
al., 2017; Ramaker et al., 2017; Scarpa et al., 2018; Seney et
al., 2018; Sequeira et al., 2007; Wang et al., 2008). Using two
alternative analytical approaches, we identified 12 DEGs,
which showed different mRNA levels among diagnostic
groups. Notably, several identified DEGs have also been
implicated in earlier studies (Pantazatos et al., 2017; Scarpa
et al., 2018), although the magnitudes of significance differed
among studies due to varied sample sizes.

We did not observe significant overlap between DEGs (or
nominally dysregulated genes) and MDD genetic risk genes,
suggesting that genetic risk might have only subtle effects on
transcriptomic change, at least in the human DLPFC tissues.
Nevertheless, the human DEGs were successfully replicated

in stressed mice, highlighting the pivotal roles of stress
exposure in altered brain transcriptomes. This result confirms
the contention that stress is an important risk factor for
depression. Consistently, recent research also reported
shared transcriptomic signatures between MDD patients and
mice under chronic stress (Scarpa et al., 2020). Therefore,
cross-species analyses may provide crucial insights into the
neurobiological basis of depression.

Based on WGCNA, we found three co-expression modules
associated with MDD. Genes in these modules were
significantly enriched in GO terms, including spine-, synapse-,
and learning-associated processes, thereby confirming the
impairment of cognitive function as a typical MDD
characteristic, as applied in diagnostic and therapeutic
practices (Gotlib & Joormann, 2010; Solé et al., 2015). In
addition, our results were consistent with previous studies
showing that synaptic dysfunctions play important roles in the
pathogenesis of depression (Duman & Aghajanian, 2012;
Russo & Nestler, 2013). Intriguingly, some genes in the MDD-
associated modules also participate in the regulation of
circadian rhythm. It is acknowledged that sleep disturbance is
a core symptom of depression (Nutt et al., 2008; Riemann et
al., 2001), and serotoninergic neurotransmission dysfunction
appears to play a pivotal role in insomnia in MDD patients
(Adrien, 2002), thus explaining the neurobiological basis
underlying the relationship between depression and circadian
rhythm. Therefore, our results further support these
pathological mechanisms in MDD.

We identified several genes potentially involved in MDD and
stress response, among which FOS was significantly
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correlated with MDD diagnosis and stress exposure in both
humans and mice. FOS is an IEG known to respond rapidly
and transiently to cellular stimuli (Curran & Franza, 1988;
Gallo et al., 2018). So far, accumulating studies have revealed
the vital roles of IEGs in a variety of physiological processes,
e.g., IEGs in certain types of cells and brain regions are tightly
linked with learning and memory processes, as well as
synaptic plasticity (Fleischmann et al., 2003; Gallo et al., 2018;
Guzowski et al., 1999; Minatohara et al., 2015; Yasoshima et
al., 2006), and have been widely applied as neuronal activity
markers (Zhu et al., 2017). Studies using murine models of
depression have also shown that IEGs are the most
representative responders to stress exposure. For example,
previous study found that AFosB overexpression in mice
produces a resilience effect against CSDS (Donahue et al.,
2014). Our results also support the potential role of IEGs as a
connecting node between stress and MDD-relevant
pathological changes (Covington et al., 2010; Hodges et al.,
2014). Additionally, we showed that IEGs were significantly
down-regulated in MDD patients, thereby confirming the
abnormal cognitive function of such patients and stressed
model animals (Millan et al., 2012), which likely resulted from
synaptic dysfunctions in brain regions engaged in cognitive
and memory processes (Forrest et al., 2018; Kang et al.,
2012). Intriguingly, we also showed that Fos was significantly
down-regulated following CSDS exposure, but only in mice
susceptible to CSDS rather than in the resilient mice.
Therefore, Fos may be a crucial susceptibility factor of stress-
induced depression and may facilitate stress response-related
MDD pathogenesis. However, further research is required.
While this study has presented intriguing findings, limitations
should also be acknowledged. As described earlier, MDD is a
polygenic disorder that likely involves hundreds or thousands
of genes in its pathogenesis. Due to the limited sample size,
our differential expression analyses only identified 12 genes
surpassing the threshold of genome-wide significance. It is
reasonable to argue that there are still important DEGs to be
discovered and further investigations using larger samples are
warranted. In addition, some included MDD patients had taken
medications that may have affected their brain transcriptomes,
which is a potential study limitation. Furthermore, the non-
significant overlap between DEGs (or nominally dysregulated
genes) and MDD genetic risk genes remains to be explained.
It may have resulted due to technical reasons (e.g., small
sample size, selection of DLPFC) or may be a reflection of
sophisticated transcriptome regulation in MDD. Given that risk
genetic variations of psychiatric disorders often affect mMRNA
expression of nearby or distal genes in the brain (Edwards et
al., 2013; French & Edwards, 2020; Li et al., 2019; Liu et al.,
2019; Yang et al., 2020a; Yang et al., 2020b), it is unlikely that
this non-significant overlap provides a final answer.
Nevertheless, recent single-cell transcriptomic analyses have
found that gene expression profiles of different types of cells in
the brain differ significantly (Kanton et al., 2019; Zhong et al.,
2018); therefore, it is possible that genetic risk may only exert
impact in certain types of cells, which may have been
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overshadowed in the current analyses of bulk tissues. In
addition, the current study utilized data obtained from
postnatal brain tissues, and most donors were adults. Whether
MDD genetic risk affects the brain transcriptome during a
particular stage of neurodevelopment is also an important
question to answer. Last, but not least, growing evidence
suggests that genetic risk may selectively affect mRNA
abundance of particular isoforms of a gene (Cai et al., 2020; Li
et al,, 2016; Ma et al., 2020), yet many such isoforms were not
annotated in the current reference genome. Therefore, further
investigations on the impact of genetic risk on isoforms or
transcripts differentially expressed in MDD patients compared
with controls are necessary.

In summary, we observed transcriptomic dysregulations in
depression across humans and mice, many of which
responded to stress exposure. Despite several questions
remaining to be addressed, our data provide valuable insights
into the pathogenesis of depression.
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