ZOOLOGICAL RESEARCH

Genome-wide identification of imprinted genes in pigs
and their different imprinting status compared with

other mammals

DEAR EDITOR,

Genomic imprinting often results in parent-of-origin specific
differential expression of maternally and paternally inherited
alleles and plays an essential role in mammalian development
and growth. Mammalian genomic imprinting has primarily
been studied in mice and humans, with only limited
information available for pigs. To systematically characterize
this phenomenon and evaluate imprinting status between
different species, we investigated imprinted genes on a
genome-wide scale in pig brain tissues. Specifically, we
performed bioinformatics analysis of high-throughput
sequencing results from parental genomes and offspring
transcriptomes of hybrid crosses between Duroc and Diannan
small-ear pigs. We identified 11 paternally and five maternally
expressed imprinted genes in pigs with highly stringent
selection criteria. Additionally, we found that the KCNQ71 and
IGF2R genes, which are related to development, displayed a
different imprinting status in pigs compared with that in mice
and humans. This comprehensive research should help
improve our knowledge on genomic imprinting in pigs and
highlight the potential use of imprinted genes in the pig
breeding field.

Genomic imprinting is a parent-of-origin-dependent
phenomenon whereby only one of the two alleles originating
from parents is expressed (McGrath & Solter, 1984; Surani et
al., 1984). Genomic imprinting is regulated through epigenetic
mechanisms, including DNA  methylation, histone
modifications, and non-coding RNAs (Grandjean et al., 2001;
Inoue et al., 2017; Li et al,, 1993; Sleutels et al., 2002).
Interestingly, genomic imprinting exhibits unique species-
specific expression patterns (Kalscheuer et al., 1993). In mice,
for example, IGF2R (insulin-like growth factor 2 receptor) is
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regulated by a maternal differentially methylated region (DMR)
(Stoger et al., 1993). The DMR can be inherited by the next
generation and cause maternal allele expression, which
influences fetal development and metabolic regulation (Stoger
et al., 1993; Wutz et al., 1997). In humans, IGF2R is reported
to be biallelically expressed (Kalscheuer et al., 1993). Pigs are
an important domestic species and widely applied large
animal model in medical research (Rubin et al., 2012; Yan et
al., 2018). A paternally expressed /GF2 gene in pigs is known
to affect muscle growth, fat deposition, and heart size (Van
Laere et al., 2003). However, to the best of our knowledge,
few studies have applied next-generation sequencing to detect
genomic imprinting in pigs at the genome-wide scale (Ahn et
al., 2019; Oczkowicz et al., 2018). Most previous studies on
pigs have surveyed the imprinting status of known imprinted
genes identified in mice and used for genetic manipulation of
pig embryos (Bischoff et al., 2009; Park et al., 2011).
Genome-wide surveys for novel imprinted genes in pigs
remain poorly studied. Furthermore, the similarities and
differences in imprinting status between pigs and other
mammals are unclear.

To analyze imprinted genes in pigs, we selected two
distantly related pig strains to generate initial crosses (Duroc
pig (male)xDiannan small-ear pig (female)) and reciprocal
crosses (Duroc pig (female)xDiannan small-ear pig (male)).
Experiments were approved by the Institutional Animal Care
and Use Committee at the Kunming Institute of Zoology,
Chinese Academy of Sciences (approval ID No.: SMKX-
2017023). The identification of imprinted genes was described
in detail in the Supplementary Materials and Methods. Ear
tissue samples were collected from the parent animals and
were used to extract DNA with a TIANamp Genomic DNA Kit
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(Tiangen Biotech, China). RNA from offspring brain tissue
samples was isolated using a TaKaRa MiniBEST Universal
RNA Extraction Kit (TaKaRa, China). Total RNA and genomic
DNA quality was analyzed using a NanoDrop 2000 as well as
agarose gel electrophoresis. The standard lllumina protocols
were applied to construct libraries and sequences for DNA-
seq and RNA-seq on the lllumina platform. To remove the
influence of mapping bias, we generated 1 907 M paired-end

Figure 1 Genome-wide identification of imprinted genes in pigs

DNA-seq parent reads from seven Duroc pig samples and 10
Diannan small-ear pig samples with an average sequencing
depth of 8.91x to 13.16x (Supplementary Table S1). In total,
40 648 348 single nucleotide polymorphisms (SNPs) with at
least one read supported between Diannan small-ear pigs and
Duroc pigs were detected (Figure 1A). After low-quality SNP
filtering using the Genome Analysis Toolkit (GATK) hard filter
module (McKenna et al., 2010), 32 942 732 high-quality SNPs

A: Pipeline for identification of pig imprinted genes. B, C: SNP sites associated with allele-specific expression in initial crosses (B) and reciprocal
crosses (C). Gray dots are SNP sites associated with allele-specific expression. Red dots represent paternally imprinted sites. Blue dots represent
maternally imprinted sites. Red lines denote 1:1 expression ratio between two alleles.
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were retained (Figure 1A). We selected SNPs that were
homozygous in each parent but differed between male and
female parents as informative SNPs to distinguish the origin of
SNPs. If the SNP site was heterozygous in one sample, the
site was removed in subsequent analysis. If the genotype was
different in one breed, the site was also excluded. Finally, 493
001 and 29 380 unique homozygous SNPs were used for
generating the Diannan small-ear and Duroc pig genomes,
respectively (Figure 1A).

Using 36 F1 offspring samples from the two types of hybrid
crosses, we generated 2 098 M paired-end RNA-seq reads
with an average sequencing depth of 3.49x to 6.42x
(Supplementary Table S1), which were then aligned to the
Diannan small-ear and Duroc pig genomes, respectively
(Figure 1A). The correlations among RNA-seq samples were
evaluated using Pearson correlation coefficients, which were
calculated using multiBamSummary and plotCorrelation in
deepTools (Ramirez et al., 2016) (Supplementary Figure S1).
In total, 522 381 unique SNPs were detected in the parent
DNA-seq data, which were then used to calculate the number
of reads for each allele. Finally, 384 791 SNPs had more than
one read supported by the RNA-seq data and were annotated,
with 257 356 SNPs covering 9 871 genes (data not shown).
The other 127 435 SNPs were located in intergenic regions
(data not shown). Allele-specific expression was assayed, with
significant deviation observed from the 1:1 expression ratio
between the read count of two alleles. The Binom.test and
false discovery rate (FDR) were used for F1 offspring RNA-
seq data from the 15 initial crosses and 21 reciprocal crosses
(Figure 1A). After filtering based on P<0.05 and FDR<0.1, 13
761 allele-specific expression sites in the initial crosses and
25 221 allele-specific expression sites in the reciprocal
crosses (located in 1 775 genes) were detected in the 36 F1

Table 1 Details on 16 imprinted genes detected in pigs

offspring samples (Figure 1A-C; Supplementary Table S2).

To detect high-confidence imprinted genes, we required all
allele-specific expression sites to show the same parent-
biased expression direction in both the initial and reciprocal
crosses. To remove the influence of random expression, the
imprinted sites were required to have more than two
supported samples in both the initial and reciprocal crosses. In
total, 18 paternally expressed imprinted sites (covering 11
genes) and nine maternally expressed imprinted sites
(covering five genes) were detected (Figure 1A; Table 1 and
Supplementary Table S3). Interestingly, of the 16 imprinted
genes detected, most have not been reported in any species
in previous genomic imprinting studies. The known imprinted
genes included IGF2R (Barlow et al., 1991), GNAS (Hayward
et al., 1998), NNAT (Kagitani et al., 1997), and KCNQ1 (Lee et
al., 1997). IGF2R was one of the first imprinted genes
identified in mice, and plays an important role in biological
functions such as fetal growth and placental function (Barlow
et al.,, 1991; Owens, 1991), with IGF2R knockout mice found
to exhibit fetal overgrowth or late gestational lethality (Lau et
al.,, 1994). In addition, KCNQ7T is an important maternally
expressed imprinted gene in mice and humans and is involved
in fetal development, as well as type 2 diabetes susceptibility
(Gould & Pfeifer, 1998; Yasuda et al., 2008). The newly
identified imprinted genes included KBTBD6, ZNF791,
ZNF709, JPH3 and NOBT et al. (Table 1; Supplementary
Table S3). KBTBD6 (KELCH repeat and BTB domain
containing 6) is known to interact with the human GABARAP
subfamily of ATG8 family members in a LC3-interacting region
(LIR)-dependent manner (Genau et al.,, 2015). Current
research indicates that Zinc Finger Protein 791 (ZNF791)
plays a critical role in female mitotic phase fetal germ cells (Li
et al., 2017). ZNF709 is a member of the zinc finger family and

Expressed allele in mammals

Ensembl ID Gene symbol -
Human Mouse Pig

ENSSSCG00000039556 KCNQ1 Maternally Maternally Paternally
ENSSSCG00000004044 IGF2R Biallelically Maternally Paternally
ENSSSCG00000007336 NNAT Paternally Paternally Paternally
ENSSSCG00000007520 GNAS Maternally Maternally Maternally
ENSSSCG00000031378 KBTBD6 N/A N/A Paternally
ENSSSCG00000029347 ZNF791 N/A N/A Paternally
ENSSSCG00000002753 NOB1 N/A N/A Maternally
ENSSSCG00000013717 ZNF709 N/A N/A Paternally
ENSSSCG00000014838 PGM2L1 N/A N/A Maternally
ENSSSCG00000002653 JPH3 N/A N/A Paternally
ENSSSCG00000022177 DIS3L2 N/A N/A Paternally
ENSSSCG00000036033 THRB N/A N/A Paternally
ENSSSCG00000037530 TACC2 N/A N/A Paternally
ENSSSCG00000025243 SGIP1 N/A N/A Paternally
ENSSSCG00000048719 N/A N/A N/A Maternally
ENSSSCG00000051274 N/A N/A N/A Maternally

N/A: Not available.
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its knockdown in human cells leads to increased expression of
p53 (Yan et al., 2016). JPH3 (Junctophilin 3) is a novel tumor
suppressor gene methylated in colorectal and gastric tumors,
promoting mitochondrial-mediated apoptosis, and is also a
potential metastasis and survival biomarker for digestive
cancers (Hu et al., 2017). Taken together, our method reliably
identified imprinted genes on a genome-wide scale. Further
studies and experimental validation of these genes should
provide new information on genomic imprinting in pigs. In
addition, imprinted genes could be a new class of gene for
application in pig breeding.

In general, imprinting status is constant within a species and
is conserved among different species (Thorvaldsen &
Bartolomei, 2007). Interestingly, KCNQ7 is a maternally
expressed imprinted gene in mice and humans (Gould &
Pfeifer, 1998), but was paternally expressed in pigs in our
data. Previous research has shown the detection of KCNQ1
genomic imprinting to be non-informative in pigs (Bischoff et
al., 2009). Our study is the first to report on KCNQ7 as a
paternally expressed imprinted gene in pigs. Specifically, for
KCNQ1, all eight allele-specific expression sites showed
paternally expressed imprinting status in the offspring of the
initial and reciprocal crosses (Supplementary Table S2 and
S3). In addition, IGF2R was paternally expressed in 19 brain
tissue samples at a precise allele-specific expression site
(Supplementary Table S2 and S3), with imprinting status
differing from that reported in previous studies on pigs
(Bischoff et al., 2009; Braunschweig, 2012; Killian et al., 2001;
Shen et al., 2012). The paternally expressed imprinting status
of IGF2R in pigs also differed from that found in mice and
humans (Table 1). Thus, further studies are needed to analyze
the biological significance of the different imprinting statuses
between different species.

In total, we identified 11 paternally and five maternally
expressed imprinted genes in the pig genome, which is
currently the most comprehensive analysis of imprinted genes
in pigs. We also found that KCNQ17 and /IGF2R displayed a
different imprinting status in pigs compared to that in mice and
humans. This study highlights the potential use of imprinted
genes within the pig breeding field.
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