ZOOLOGICAL RESEARCH

First record of disk-footed bat Eudiscopus denticulus
(Chiroptera, Vespertilionidae) from China and
resolution of phylogenetic position of the genus

DEAR EDITOR,

The disk-footed bat Eudiscopus denticulus (Osgood, 1932) is
a rare species in Southeast Asia. During two chiropteran
surveys in the summer of 1981 and 2019, eight and three
small Myotis- like bats with distinct disk-like hindfeet were
collected from Yunnan Province, China, respectively. External,
craniodental, and phylogenetic evidence confirmed these
specimens as E. denticulus, representing a new genus in
China. The complete mitochondrial genome consistently
showed robust support for E. denticulus as a basal lineage
within Myotinae. The coding patterns and characteristics of its
mitochondrial genome were similar to that of other published
genomes from Myotis. The echolocation signals of the newly
collected individuals were analyzed. The potential distribution
range of Eudiscopus in Southeast Asia inferred using the
MaxEnt model indicated its potential occurrence along the
southern border region of Yunnan, China.

In 1932, Osgood described a new genus and species of
vespertilionid bat based on six specimens collected at Phong
Saly in northern Laos, externally resembling a small Myotis
species but with a striking adhesive disk on the hindfoot and
with a flattened skull, and was named Discopus denticulus
Osgood, 1932. Conisbee (1953) noted, however, that the
name Discopus was preoccupied and proposed Eudiscopus
as a replacement name. Till today, only a limited number of
specimens have been found in Southeast Asia and the
biological information available on the species is limited
(Wilson & Mittermeier, 2019). Presently, the species is
reported from Laos (Osgood, 1932), Myanmar (Koopman,
1970), Thailand (Kock & Kovac, 2000; Soisook et al., 2016),
and Vietnam (Kruskop, 2010, 2013; Zsebdk et al., 2014)
(Figure 1F). Based on morphological examinations and
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phylogenetic analyses of 11 specimens collected from
Yunnan, we herein report on the first occurrence of this poorly
known bat from China.

Due to the limitation of available samples and sequences of
E. denticulus, its phylogenetic position remains contradictory.
Traditional morphology-based systematics place it within
Vespertilioninae (Simmons, 2005; Tate, 1942), or close to
Myotis (Borisenko & Kruskop, 2003). Several phylogenies
support the inclusion of E. denticulus in Myotinae (Amador et
al.,, 2018; Tsytsulina et al., 2007; Yu et al., 2014); whereas
others reveal different positions, including placement outside
of Myotinae (Amador et al., 2018; Shi & Rabosky, 2015), or —
albeit with low support — as a sister taxon to Hesperoptenus
tickelli (Gorfol et al., 2019). Clarifying its phylogenetic position
would not only improve our understanding of the
morphological evolutionary process of this unique species but
also help determine the convergent evolution of flattened
skulls and the presence of the disk-like hindfoot in
Vespertilionidae. Two data matrices representing a large-scale
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sampling of Vespertilionidae (~5 kb, 360 species) and a
compilation of all currently deposited complete mitochondrial
genomes (~15 kb, 101 species) were herein generated to
determine the phylogenetic position of this species. Acoustic
characteristics of the echolocation calls were further analyzed.
Through maximum entropy (MaxEnt) modelling, potentially
suitable habitats were also inferred.

Eudiscopus denticulus from China was sampled from three
sites in Xishuangbanna, Yunnan Province (see Supple-
mentary Data). The eight specimens sampled in 1981 were

initially misidentified as Tylonycteris sp. but were reclassified
as E. denticulus in 2019. All specimens in the study are adults
based on the status of the epiphyseal cartilage gap in the
metacarpal joint (Kunz & Anthony, 1982). They are presently
stored in the collections of the Kunming Institute of Zoology,
Chinese Academy of Sciences, Yunnan, China (KIZ 811351-
811358) and the School of Life Sciences, Guangzhou Univ-
ersity, Guangdong, China (GZHU 19159, 19160, 19164). The
specimens are all small-sized individuals with a forearm length
of 34.8-38.5 mm (Table 1), and externally resemble a small

Figure 1 External (A-C), skull, and dentition (D, E) characteristics of Eudiscopus denticulus from China (GZHU 19159), its potential
distribution areas in Southeast Asia predicted by MaxEnt (F), and two maximum-likelihood phylogenetic trees using IQ-tree (G, H)

Live individual (A), ear (B), and hindfoot (C); lateral view of skull and mandible (D); ventral view of skull (E). Scale bar: 5 mm. Photos by Yi Wu
(A—C); drawings by Wen-Hua Yu (D, E). F: Black circles mark sampling localities in Xishuangbanna, Yunnan, China; green circles represent
historical occurrences from literature and Global Biodiversity Information Facility (GBIF) database (Occurrence dataset https://doi.org/10.15468/
igaciv accessed via GBIF.org on 2019-10-14). Red regions are good potential distributions based on localities known so far; orange areas are
predictions with inclusion of present records. G: Phylogenetic tree containing 360 presumed vespertilionid species representing large-scale

sampling strategy. H: Phylogenetic tree based on 101 complete mitochondrial sequences. Red, green, and blue trapezoids represent Eudiscopus,

Submyotodon, and Myotis, respectively.
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Myotis species. The fur is dense and soft, reddish brown at
the dorsum (Figure 1A). The ears reach the tip of the muzzle
when laid forward, and the tragus is straight and distinctly
narrowing, ending in a blunt tip (Figure 1B). Noticeable disk-
like adhesive pads are present on the feet, similar to that in
Tylonycteris and Glischropus but more pronounced ventrally
(Figure 1C). The skull is relatively broad and strikingly
flattened; rostrum is elongated and relatively long and
upturned anteriorly (Figure 1D, E). Dental formula is | 2/3, C
11, P 2/3, M 3/3. Upper canine is Myotis- like without any
supplementary cusps; first upper incisor is higher than the
second, as in Myotis, ps is largely reduced, displaced to the
lingual side of the tooth row, and compressed between p, and
p4; lower molars are myotodont (Figure 1D, E ). Detailed
information and measurements of all specimens used in this
study are listed in Table 1 and Supplementary Appendix |. To
illustrate potential geographic variation, principal component
analysis (PCA) with varimax rotation and{ test were
performed. According to the integrity of our data, 10
craniodental measurements were selected in the PCA. The
first two components (44% and 33% for principal components
PC1 and PC2, respectively) accounted for 77% of total
variance (Supplementary Figure S1). For PC1, greatest length
of skull (GTL), length of maxillary toothrow (UCM?3L), length of
mandibular toothrow (LCMsL), and greatest length of mandible
(MANL) had high positive loadings (Table 1), reflecting an
external overall size effect. PC2 was mostly related to
braincase height (BCH), mastoid width (MAW), and interorbital
width (IOW) (Table 1), generally implying width and height of
braincase. These patterns indicated that individuals from
China and Laos have a wider and more flattened braincase
than those from the middle regions of Vietnam and Myanmar
(Table 1 and Supplementary Figure S1). Such differences
were also revealed from comparisons between China and
Vietnam using t- test, which additionally revealed a longer
forearm in the Chinese population (Table 1).

The complete mitochondrial genome of E. denticulus was
~16 500 bp in length, containing 13 protein-coding genes, two
ribosomal RNA genes, 22 transfer RNA genes, and a control
region (GenBank accession No.: MW085031 for GZHU 19159,
Supplementary Figure S2). Most genes were encoded on the
H-strand, except for eight {RNA and ND6 genes. The coding
patterns and characteristics are similar to those in other
published mitochondrial genomes of Myotinae (e.g., Chung et
al., 2018; Jebb et al., 2017; Jiang et al., 2016; Platt et al.,
2017; Yu et al., 2016). Our large-scale vespertilionid
maximume-likelihood phylogenies highly  supported E.
denticulus as a monophyletic clade (bootstrap value: 100;
Figure 1G and Supplementary Figures S3A) as well as its
inclusion within Myotinae (Figure 1G, H ). Furthermore, E.
denticulus appeared as a sister taxon to a clade clustering
Myotis and Submyotodon , indicating a basal position within
Myotinae (Figure 1G). For intraspecific relationships, an
ambiguous haplotype network emerged, which implied a close
matrilineal relationship between our samples and individuals
from Bu Gia Map National Park, BinhPhuc, Vietnam, based on
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mitochondrial markers (GenBank accession No. of Chinese
individuals: MT822523 for GZHU 19159, MT822524 for GZHU
19160; Supplementary Figure S3B).

Eudiscopus denticulus uses a broadband, downward
frequency modulated (FM) call when flying in closed
environments (see Supplementary Data; Supplementary
Figure S4). Both our recordings and those from Zsebdk et al.
(2014), from specimens flying in a tent or room, showed a
broadband FM signal with a narrowband FM end, rather than
the broadband FM calls reported by Hughes et al. (2011) in
two individuals released in a cluttered environment. The call
structure and relatively long and broad wings support the view
that E. denticulus is an edge space aerial forager (Schnitzler
et al.,, 2003; Zsebdk et al., 2014). From the specimens in
China, specifically, the maximum start frequency was found to
be around 98 kHz, and the minimum end frequency was
around 50 kHz (Table 1). At the start of the echolocation call,
the narrowband FM portion was always relatively short
(Supplementary Figure S4). The maximum energy was at
53.3 kHz, on average (Supplementary Figure S4), while the
mean length of the echolocation calls was around 3.1 ms
(Table 1). The geographic differences in morphological mea-
surements were mirrored in the acoustic signals, as our
samples emitted lower frequency echolocation calls (e.g.,
highest frequency (HF), lowest frequency (LF), and frequency
with most energy (FMAX)) than those from Vietnam (Zsebdk et
al., 2014) (Table 1). These differences seem to be in line with
the negative correlation between body size and call frequency
(Barclay et al., 1999; Robinson, 1996; Schnitzler & Kalko,
2001; Yoshino et al.,, 2006); however, more elaborate
experiments are needed to verify these differences due to the
variances in methods used for recording, which may have
affected echolocation parameters.

As the present record is the northernmost locality of E.
denticulus, we ran two MaxEnt models (with and without the
new record) to evaluate its influence on potential distribution of
the species. Both model outputs provided satisfactory results,
with AUC values of the models with and without our records of
0.89 and 0.75, respectively. Mean temperature of warmest
quarter (BIO10) and precipitation of coldest quarter (BIO19)
were the most important influencing factors. The model for
current potential distribution of E. denticulus in Southeast Asia
showed that the most suitable habitat is medium warm and
moist forest with bamboo stands. The large potential area with
the inclusion of the present Chinese records is approximately
twice the size as the prediction based on published
occurrences so far (Figure 1F). However, the MaxEnt model
almost always provides over-estimates compared to the
realized niche of a species, as it only considers niche-based
presence data and predicts a species’ fundamental niche
rather than realized niche (Phillips & Dudik, 2008; Phillips et
al., 2004). Nevertheless, the inference obtained should
facilitate subsequent targeted investigation on this rare
species.

In the IUCN Red List, E. denticulus was shifted from Lower
Risk/Near Threatened in 1996, to Data Deficient in 2008, and



Table 1 Descriptive statistics of external and craniodental measurements, and echolocation parameters of Eudiscopus denticulus from

China and nearby countries

Index Yunnan, China Pu Huong, Vietnam t-value Pegu, Myanmar Laos PC1 PC2
W (g9) 5.241.14 (11) (4.0—7.0) - - - - - -
HB (mm) 40.5+2.28 (11) (36.0—45.3) 38.0+2.19 (5) (35.9—40.5) 2.06 - - - —

T (mm) 40.3+2.87 (11) (35.0—45.0) 38.8+2.56 (5) (34.9—41.4) 1.05 - - - -

E (mm) 11.2+1.75 (11) (8.0—13.0) 11.6+0.66 (4) (10.9—12.5) —0.51 = = = =
HF (mm) 6.0£0.82 (11) (5.4—8.1) 6.7+0.63 (5) (5.8—7.2) —1.56 — - - —
FA (mm) 36.7+1.10 (11) (34.8—38.5) 34.5+0.88 (5) (33.5—35.6) 3.98* — — — —
Tib (mm) 17.240.54 (11) (16.2—17.9) 16.3+0.64 (5) (15.4—16.9) 2.68* — - - -
GTL (mm) 14.34+0.34 (8) (13.71—14.79) 14.00+0.22 (10) (13.59—14.32)  2.56* 13.43 1449 0.81 0.54
CCL (mm) 13.28+0.28 (8) (12.83—13.74) 12.79+0.21 (11) (12.47—13.04)  4.43* 12.15 13.16  0.72 0.62
CBL (mm) 14£0.32 (8) (13.35—14.42) — - — - — —
BCW (mm) 6.84+0.14 (8) (6.63—7.01) 6.740.1 (11) (6.53—6.87) 1.76 6.36 6.99 0.46 0.56
BCH (mm) 4.53+0.23 (8) (4.16—4.78) 3.76+£0.12 (11) (3.54—3.97) 8.86* 3.07 3.54 0.35 0.72
ZYW (mm) 9.48+0.29 (4) (9.16—9.82) 9.21+0.15 (6) (8.97—9.43) - — - - -
MAW (mm) 7.72+0.19 (8) (7.41—7.92) 7.51£0.16 (11) (7.34—7.81) 2.64* 7.20 7.75 0.49 0.75
PL (mm) 6.38+0.11 (8) (6.25—6.6) — - — - - —
IOW (mm) 3.73+0.11 (8) (3.60—3.89) 3.61+0.16 (11) (3.4—3.94) 1.95 3.47 3.71 —0.14 0.87
UIM3L (mm) 6.42+0.18 (8) (6.12—6.68) - - - - - -
UCM3L (mm) 5.44+0.11 (8) (5.31—5.58) 5.3610.11 (10) (5.21—5.49) 1.61 5.20 5.48 0.88 0.25
UCCW (mm) 3.77+0.06 (8) (3.71—3.91) 3.70+0.09 (9) (3.60—3.91) 1.60NS 3.59 3.80 0.62 0.53
UMBM®W (mm)  5.86%0.12 (8) (5.62—6.01) 5.81+0.09 (10) (5.74—6.05) 1.24 — 5.88 - -
LIMsL (mm) 6.80+0.15 (8) (6.56—7.06) — — — — - -
LCM;L (mm) 5.74+0.12 (8) (5.54—5.88) 5.70+0.12 (11) (5.52—5.85) 0.77 5.49 5.68 0.89 —0.07
MANL (mm) 10.23+0.18 (8) (9.82—10.42) 10.2+0.15 (11) (9.91—10.46) 0.34 9.74 10.63  0.80 0.30
PCH (mm) 3.29+0.11 (8) (3.13—3.40) 3.16+0.11 (11) (3—3.38) 2.63* 3.00, 3.09 3.25 — —
HF (kHz) 98.3+3.25 (24) (92.0—104.0) 108.9 (3) (106.5—112.9)* - — - - —
LF (kHz) 49.9+2.02 (24) (45.0—54.4) 52.0 (51.1—53.9)* = = = = =
FMAX (kHz) 53.3+1.29 (24) (50.1—55.0) 61.7 (60.9—63.0)* - — - — —
DUR (ms) 3.110.24 (24) (2.8—3.7) 2.03 (1.87—2.11) = = = = =

Abbreviations can be found in text and Supplementary Materials and Methods. Values are given as means+SD (if n>3) and minimum -maximum
(min-max). t-value is from Students t-test between China and Vietnam specimens when measurement distribution fits normality, and * represents
P<0.05. Using a Pettersson D500X ultrasound detector (Pettersson Elektronik AB), echolocation calls were recorded from three Chinese-sampled
bats (collected in 2019) flying in a room (5 mx4 mx3 m). # indicates secondary means and minimum and maximum values based on mean values of
three individuals from Zsebdk et al. (2014). Note, scores in first parentheses in echolocation measurements indicate number of calls analyzed in this
study; those from Zsebd&k et al. (2014) represent number of individuals in their study. Indices in bold indicate variables used in principal component
analysis, PC1 and PC2 scores in bold indicate variables with greatest loadings in respective component. —: Not available.

Least Concern at present. This classification is based on its 2010, 2013; Tsytsulina et al., 2007; Wilson & Mittermeier,
wide distribution across Southeast Asia, lack of major threats, 2019). Furthermore, our distribution predictions using MaxEnt
and no sign of decline at a rate that would qualify it in a show that suitable habitat areas are extremely fragmentary
threatened category (Soisook et al., 2016). Nevertheless, its (Figure 1F). Of note, the large temporal gap in capture/
rarity and our poor knowledge on its biology have been collection of this species in China (38 years) also indicates its
highlighted (Kock & Kovac, 2000; Koopman, 1970; Kruskop, rarity and fragility. As such, particular conservation attention
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should be reinforced in the future.

Additional contribution herein refers to the scanning of a
skull of E. denticulus (KIZ 811355) using a RexcanDS3 Silver
3D Scanner designed for small objects with a maximum
resolution of 0.01 mm (Supplementary Figure S5). The
scanned PHY files are deposited as supplementary materials
(Suppl. PHY files). Although micro-computed tomography
(MCT) scanners would capture more accurate details with
better resolution, the considerably smaller size of our files than
those produced by a uCT scanner (e.g., ~40 MB vs. ~600 MB
in the case of a skull scan), and sufficient accuracy suggest
that laser 3D scanners can be used as an alternative for
shape analyses and morphological studies (Marcy et al.,
2018). We believe that 3D digitization and virtual access
platforms could facilitate future species determination and
boost international academic cooperation.
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