Plants interact with their environment by producing a diverse array of secondary metabolites, one of which is alkaloid. In this study, alkaloids, including camptothecin (CPT) and 10-hydroxycamptothecin (HCPT), malondialdehyde (MDA) and chlorophyll contents were measured during heat shock in seedlings of
Camptotheca acuminata
Decaisne unique to China. Responses of different tissues, including young leaves, old leaves, buds and barks, to heat shock were examined in alkaloid changes. CPT and HCPT concentrations reached their peak values separately at 38 °C and 40 °C, which were below the lethal heat-shock temperature indicated by MDA and chlorophyll, and their great changes took place in young leaves. These results indicated that CPT and HCPT were involved in the
C. acuminata resistance against heat shock from its environment. Furthermore, plant rigidly observed the cost-benefit principle and mobilized and allocated limited alkaloid sources to young and reproductive tissues preferentially. In addition, HCPT displayed well-regulated changes during incubation at sublethal temperature, and this indicated that HCPT might play a more positively defensive role in enhancement of plant thermotolerance than CPT does.