search
for
 About Bioline  All Journals  Testimonials  Membership  News


Chilean Journal of Agricultural Research
Instituto de Investigaciones Agropecuarias, INIA
ISSN: 0718-5820
EISSN: 0718-5820
Vol. 72, No. 1, 2012, pp. 125-132
Bioline Code: cj12020
Full paper language: English
Document type: Research Article
Document available free of charge

Chilean Journal of Agricultural Research, Vol. 72, No. 1, 2012, pp. 125-132

 en EFFECT OF QUAIL LITTER BIOCHAR ON PRODUCTIVITY OF FOUR NEW PHYSIC NUT VARIETIES PLANTED IN CADMIUM-CONTAMINATED SOIL
Suppadit, Tawadchai; Kitikoon, Viroj; Phubphol, Anucha & Neumnoi, Penthip

Abstract

Biochar can improve soil structure and water retention, enhance nutrient availability and retention, ameliorate acidity, and reduce heavy metal toxicity to plant roots. In this study, a basin experiment was conducted to investigate the effects of quail litter biochar (QLB) on the availability of Cd to physic nut ( Jatropha curcas check for this species in other resources L.) plants. QLB was applied to the soil in which four new physic nut varieties (Takfa, Doi Saket, Lao, and Rayong) in factorial combinations at four levels (0, 5, 10, and 15 g kg-1 soil) to soil that contained 60.8 mg Cd kg-1. After transplanting plant height and canopy radius were measured every 2-mo and the number of leaves and branches at 6-mo, while yield components and Cd residues were measured at 8-mo intervals. The contaminated soil was analyzed for chemical characteristics, nutrients, and Cd residue after the plant harvest. The addition of QLB to soil caused a significant increase in the soil's growth potential and physic nut yield components (P < 0.05), a significant decrease in the Cd residue in the plant (P < 0.05), and a significant increase in the chemical characteristics, nutrients, and Cd residue in soil (P < 0.05). In conclusion, QLB application can significantly decrease the bioavailability of Cd to physic nut plants, increase plant growth potential and yield, and has potential to remediate Cd-contaminated soil. However, QLB levels higher than 15 g kg-1 soil mixture were not advisable because QLB is alkaline in nature, and this can affect soil pH.

Keywords
Adsorption, heavy metal, phytoremediation, plant production, pyrolysis, soil amendment

 
© Copyright 2012 - Chilean Journal of Agricultural Research
Alternative site location: http://www.inia.cl

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil