search
for
 About Bioline  All Journals  Testimonials  Membership  News


Chilean Journal of Agricultural Research
Instituto de Investigaciones Agropecuarias, INIA
ISSN: 0718-5820
EISSN: 0718-5820
Vol. 78, No. 3, 2018, pp. 327-338
Bioline Code: cj18032
Full paper language: English
Document type: Research Article
Document available free of charge

Chilean Journal of Agricultural Research, Vol. 78, No. 3, 2018, pp. 327-338

 en Application of artificial neural networks to frost detection in central Chile using the next day minimum air temperature forecast
Fuentes, Marcel; Campos, Cristóbal & García-Loyola, Sebastián

Abstract

Predicting future climatic events is one of the key issues in many fields, whether in scientific or industrial areas. An artificial neural network (ANN) model, based on a backpropagation type, was developed in this study to predict the minimum air temperature of the following day from meteorological data using air temperature, relative humidity, radiation, precipitation, and wind direction and speed to detect the occurrence of radiative frost events. The configuration of the next day ANN prediction system allows operating with low-power computing machines; it is able to generate early warnings that can lead to the development of effective strategies to reduce crop damage, lower quality, and losses in agricultural production. This paper presents a procedural approach to an ANN, which was trained, validated, and tested in 10 meteorological stations in central Chile for approximately 8 yr (2010-2017). The overall mean results were classified by a confusion matrix and showed good performance in predicting minimum temperature with a mean square error (MSE) of 2.99 ºC for the network, 1.71 ºC for training, 1.77 ºC for validation, and 1.74 ºC for the testing processes. Frost detection results had an appropriate 98% overall mean accuracy (ACC), 86% sensitivity (TPR), and 2% error rate (ER). Differences and errors in frost detection can be attributed to several factors that are mainly associated with the accuracy of the sensors meteorological stations, local climatic and geographic conditions, and the number of parameters that enter in the ANN training processes.

Keywords
Artificial neural network (ANN); frost detection; next day forecasting.

 
© Copyright 2018 - Chilean Journal of Agricultural Research
Alternative site location: http://www.inia.cl

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil