search
for
 About Bioline  All Journals  Testimonials  Membership  News


The Journal of Health, Population and Nutrition
icddr,b
ISSN: 1606-0997
EISSN: 1606-0997
Vol. 37, No. 1, 2018, pp. 1
Bioline Code: hn18018
Full paper language: English
Document type: Research Article
Document available free of charge

The Journal of Health, Population and Nutrition, Vol. 37, No. 1, 2018, pp. 1

 en A study of virulence and antimicrobial resistance pattern in diarrhoeagenic Escherichia coli check for this species in other resources isolated from diarrhoeal stool specimens from children and adults in a tertiary hospital, Puducherry, India
Natarajan, Mailan; Kumar, Deepika; Mandal, Jharna; Biswal, Niranjan & Stephen, Selvaraj

Abstract

Background: Emergence of atypical enteropathogenic Escherichia coli (EPEC) and hybrid E. coli (harboring genes of more than one DEC pathotypes) strains have complicated the issue of growing antibiotic resistance in diarrhoeagenic Escherichia coli (DEC). This ongoing evolution occurs in nature predominantly via horizontal gene transfers involving the mobile genetic elements like integrons notably class 1 integron. This study was undertaken to determine the virulence pattern and antibiotic resistance among the circulating DEC strains in a tertiary care center in south of India.
Methods: Diarrhoeal stool specimens were obtained from 120 children (< 5 years) and 100 adults (> 18 years), subjected to culture and isolation of diarrhoeal pathogens. Conventional PCR was performed to detect 10 virulence and 27 antimicrobial resistance (AMR) genes among the E. coli isolated.
Results: DEC infection was observed in 45 (37.5%) children and 18 (18%) adults, among which [18 (40%), 10 (10%)] atypical EPEC was most commonly detected followed by [6 (13.3%), 4 (4%)] ETEC, [5 (11.1%) 2 (2%)] EAEC, [(3 (6.6%), 0 (0%)] EIEC, [3 (6.6%), 0 (0%] typical EPEC, and [4 (8.8%), 1 (1%)] STEC, and no NTEC and CDEC was detected. DEC co-infection in 3 (6.6%) children, and 1(1%) adult and sole hybrid DEC infection in 3 (6.6%) children was detected. The distribution of sulphonamide resistance genes (sulI, sulII, and sulIII were 83.3 and 21%, 60.41 and 42.1%, and 12.5 and 26.3%, respectively) and class 1 integron (int1) genes (41.6 and 26.31%) was higher in DEC strains isolated from children and adults, respectively. Other AMR genes detected were qnrS, qnrB, aac(6’)Ib-cr, dhfr1, aadB, aac(3)-IV, tetA, tetB, tetD, catI, blaCTX, blaSHV, and blaTEM. None harbored qnrA, qnrC, qepA, tetE, tetC, tetY, ermA, mcr1, int2, and int3 genes.
Conclusions: Atypical EPEC was a primary etiological agent of diarrhea in children and adults among the DEC pathotypes. Detection of high numbers of AMR genes and class 1 integron genes indicate the importance of mobile genetic elements in spreading of multidrug resistance genes among these strains.

Keywords
Diarrhoeagenic Escherichia coli (DEC); Diarrhea; Children; Adults; Antimicrobial resistance (AMR) genes

 
© Copyright 2018 - The Author(s)
Alternative site location: http://www.jhpn.net

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2025, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil