Purpose:
The microcrystalline cellulose is an important ingredient in pharmaceutical, food, cosmetic and other industries. This study aimed at evaluating the physical characteristics of microcrystalline cellulose (CP-MCC), obtained from the raw cotton of
Cochlospermum planchonii
.
Methods:
CP-MCC was obtained from the raw cotton by a two-stage sodium hydroxide treatment process followed by sodium hypochlorite bleaching and acid hydrolysis. It was examined for its physicochemical and powder properties. The powder properties of CP-MCC were compared to those of the well-known commercial microcrystalline cellulose grade, Avicel PH 101.
Results:
The extraction yield of CP-MCC was approximately 21%. The cellulose material was composed of irregularly shaped fibrous cellulose particles with a moisture content of 7.2% and total ash of 0.12%. The true density was 1.38. The flow indices showed that CP-MCC has poor flow. The hydration, swelling and moisture sorption capacities were 4.7, 83.3 and 22%, respectively.
Conclusion:
The cellulose product, CP-MCC, obtained from the raw cotton of
Cochlospermum planchonii conformed to the official specifications in the British Pharmacopoeia (2004). The flow properties of a powder are critical in direct compression tableting; consequently, for the materials to be used for this purpose, it would require the addition of a glidant. Furthermore, the swelling parameters indicate that CP-MCC would be a better disintegrant than Avicel PH 101.