search
for
 About Bioline  All Journals  Testimonials  Membership  News


Tropical Journal of Pharmaceutical Research
Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
ISSN: 1596-5996
EISSN: 1596-5996
Vol. 16, No. 6, 2017, pp. 1331-1335
Bioline Code: pr17170
Full paper language: English
Document type: Research Article
Document available free of charge

Tropical Journal of Pharmaceutical Research, Vol. 16, No. 6, 2017, pp. 1331-1335

 en Effect of Scrophularia ningpoensis check for this species in other resources extract on diabetes in rats
Lu, Yong; Li, Jin-lian; Jiang, Qiang; Hou, Lu-lu; Wang, Lu-lu; Pang, Shu-guang & Guan, Qing-bo

Abstract

Purpose: To investigate the effect of Scrophularia ningpoensis extract (SNE) on streptozotocin-induced diabetic rats.
Methods: SNE was obtained by steeping the dried Scrophularia ningpoensis in water at 60 oC three times, each for 1 h, before first drying in an oven at 100 oC and then freeze-drying the last extract thus obtained. Diabetic rats were prepared by a single intraperitoneal injection of a freshly prepared solution of streptozotocin (50 mg/kg). The rats were randomly divided into 6 groups of ten rats each: negative control group, control group, reference group (glibenclamide1 mg/kgbody weight) as well as SNE groups, (50, 100 and 200 mg/kg). Blood glucose and plasma insulin levels were evaluated in order to determine antihyperglycemic effect. Oxidative stress was evaluated in liver and kidney by antioxidant markers, viz, lipid peroxidation (LPO), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx) and catalase (CAT); blood serum levels of creatinine and urea were determined in both diabetic control and treated rats.
Results: Compared with diabetic rats, oral administration of SNE at a concentration of 200 mg/kg daily for 30 days showed a significant decrease in fasting blood glucose to 120.21 ± 3.37 mg/dL (p < 0.05) and increased insulin level to 13.31 ± 0.67 uU/mL (p < 0.05). Furthermore, it significantly reduced biochemical parameters (serum creatinine, 0.86 ± 0.24 mg/dL, p < 0.05) and serum urea (41.86 ± 1.59 mg/dL, p < 0.05).
Conclusion: The results suggest that SNE may effectively normalize impaired antioxidant status in streptozotocin-induced diabetes in a dose-dependent manner. SNE has a protective effect against lipid peroxidation by scavenging free radicals and is thus capable of reducing the risk of diabetic complications.

Keywords
Scrophularia ningpoensis; Diabetic; Antihyperglycemic; Antioxidant Oxidative stress; Fasting blood glucose

 
© Copyright 2017 - Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria.
Alternative site location: http://www.tjpr.org

Home Faq Resources Email Bioline
© Bioline International, 1989 - 2024, Site last up-dated on 01-Sep-2022.
Site created and maintained by the Reference Center on Environmental Information, CRIA, Brazil
System hosted by the Google Cloud Platform, GCP, Brazil