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ABSTRACT: This paper presents the estimation of exit temperatures in the isentropic compression of real gases 

based on the Peng-Robinson equation of state and entropy balance method. The methods were applied to Ar, N2, CH4, 

CO2, C2H4 and C2H6. Data obtained revealed that isentropic exponent method provides useful results for monatomic 

and diatomic gases while it is less useful when applied to polyatomic gases. Furthermore, the results obtained in this 

work show that the use of relative gravity to correlate compressor calculations for gaseous mixtures can lead to 

serious error in certain cases. 
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Two ideal thermodynamic paths have proved useful 

in the analyses of processes in which real gases are 

compressed between fixed pressure limits; these are: 

reversible adiabatic and polytropic paths. 

 

When a gas is compressed along an adiabatic path 

between pressure limits which are fixed, the exit 

temperature is unknown and must be determined 

from one of two methods; namely, 

(a) entropy balance method, or, (b)isentropic 

exponent methods. 

 

An entropy balance can be accomplished with a 

Mollier (enthalpy – entropy) chart or, algebraically, 

by solving an entropy balance equation. However, 

few Mollier charts are available on the open 

literature; consequently, to use the entropy balance 

method, one has to proceed by the algebraic route. 

The isentropic exponent methods are intuitive 

extensions of the ideal gas equation to real gases and 

assume not only that the gas is perfect but, also, that 

the ratio of the two principal heat capacity functions 

is independent of temperature. 

Today, with the availability of cubic equation of state 

(EOS) methods that are sufficiently accurate for 

engineering applications, it should be possible to set-

up an entropy balance equation from which one may 

calculate the gas exit temperatures in the isentropic 

compression of gases. This work is motivated, in 

part, by the realisation that the petroleum industry in 

Nigeria still relies on Mollier charts by Brown 

(Brown, 1944), which dates back to the 1940s, for 

solving gas compression problems (Ikoku, 1984). 

Therefore, the objective of this work is to derive the 

necessary working equations and to calculate exit 

temperatures in the isentropic expansion of real gases 

based on the Peng-Robinson EOS and entropy 

balance method. 

 

The Equation of State 

The shaft work, xW , done in a flow process is given 

by (Bett et al., 1982) 

∫=
2

1
x dpVW

 (1) 

Eq. (1) shows that any EOS method that can predict 

accurate molar volume, V, will, in principle, also lead 

to good values for the shaft work; in the present case, 

the work of isentropic compression. The virial EOS 

can predict the molar volume of gases to better than 

0.02 percent accuracy; however, its usefulness is 

limited to about one-half of the critical density or 

about 12 MPa in pressure (Monago and Otobrise, 

2016; Wiebke et al, 2011). The Lee-Kesler 

corresponding states method can predict the molar 

volume of gases and liquids to within an accuracy of 

1 percent (Lee and Kesler, 1975); unfortunately, it is 

mathematically complex and requires considerable 

computer resources for implementation in process 

flowsheeting. Although cubic EOS methods, in 

general, can predict the molar volume of gases and 

liquids only to within accuracies of about 1 – 5 per 
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cent they are mathematically simple functions that, 

relatively speaking, require minimal computer time to 

implement in process flowsheeting. Among this class 

of equations, the Peng-Robinson EOS, eq. (2), gives 

the most accurate values of molar volume (Assael et 

al, 1996); consequently, it was nominated, from 

among other cubic EOS methods, for this work. 
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In eq. (2), P is pressure, T is thermodynamic 

temperature, a is an energy parameter, b is a volume 

parameter and R is the molar gas constant; t1 and t2 

are pure numbers, defined as follows: 211 +=t  

and 212 −=t  

 

MATERIALS AND METHODS 

Thermodynamic Analyses 

Isentropic compression of real pure gases 

An isentrope of a gas, whether ideal or real, satisfies 

the differential equation (Monago, 2002) 

0d)(d)( vp =∂∂+∂∂ VTPPTV γ
      (3) 

In eq. (3), γ = Cp/Cv; Cp is the isobaric heat capacity 

and Cv is the isochoric analogue. The above equation 

may be solved in order to calculate temperatures 

along a line of constant entropy; however, it is 

computationally easier and more elegant to apply the 

condition 

12 SS =
                   (4) 

Where, Si is the molar entropy at state i. At one time, 

eq. (4) was implemented by summing entropy 

changes around a cycle of processes, the proposition 

being that the sum of entropies around a cyclic 

process is zero; hence, the procedure became known 

as the entropy balance method. The molar entropy of 

a fluid at state i, is given by (Monago, 2016). 

[ ] VVRTP
R

ZT
R

PP
R

PTS

R

PTS

V

T

T T

C

i

d)(
1

lnd
1

)ln(
),(),(

i

i

0

pg
p

v

i0
00

pg
i

∫

∫

∞
−∂∂+

++−=  (5) 

In eq. (5), superscript ‘pg’ indicates the ideal gas 

state and subscript 0 indicates a reference state. 

The compressibility factor at state i(P, T) is defined 

by 

RT

pV
Z i= .                             (6) 

The heat capacity of the gas in the hypothetical ideal-

gas state, ��
��

, is traditionally given by 
32pg

p TdTcTbaC cccc +++=
. 

Where, ac, bc, cc and dc are constant coefficients. 

From eq. (2) and (5), one obtains that if a gas obeys 

the Peng-Robinson EOS, its entropy at state i is given 

by: 
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Where, )( RTPbB =  is dimensionless volume 

parameter; A = aP/(RT)
2
 is dimensionless energy 

parameter. From eq. (4) and (7), one obtains a 

computational equation in terms of T2 that is satisfied 

along an isentrope of a real gas; within the 

framework of the Peng-Robinson EOS 
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Where, 
2)(RTPaA TT ′=′  is dimensionless first 

temperature derivative of the energy parameter, and 

rc Tma
T
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Ta
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Tr is reduced temperature; Tr = T/Tc, and Tc is critical 

temperature. 

 

Reversible isothermal compression of real pure 

gases  

The usefulness of the reversible isothermal path lies 

in its position as a limit process: minimum work of 

compression is expended along a reversible 

isothermal path. For a fluid that obeys the Peng-

Robinson EOS, its consequences are readily set out 

)()ln()ln( 121212 ZZRTPPRTZZRTW
iso

x −−−=
        

  (10) 
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And, following the engineering sign convention for 

Wx, 
isoiso

x HWQ ∆+=iso                  (12) 

In eq. (10) – (12), 
iso

iH  is the enthalpy of the gas at 

state i, 
iso

xW  is the work of compression and Qiso is 

the heat transfer along the isothermal path. 
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Compression of mixtures: 

For mixtures, some of the quantities defined in 

section 3.1 to 3.2 need to be modified according to 

the following prescriptions. The energy parameter for 

a mixture, amix, is given by the van der Waals one-

fluid mixing rule: 

 

∑∑
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The volume parameter for a mixture, bmix, is taken as 

a simple mole-fraction-weighted average of the pure 

component values: 

∑
=

=
c
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Where, in eq. (13) and (14) ai and bi are, respectively, 

the energy and volume parameters of pure i. The 

dimensionless analogues of Amix and Bmix for 

mixtures are similarly defined: 
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Derived Thermodynamic Properties: 

Once eq. (8) is solved for the exit temperature, T2; 

other thermodynamic properties can be calculated 

within the framework of the particular equation of 

state, which here is the Peng-Robinson equation. The 

enthalpy at state 2 is given by 
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The work done in the isentropic compression is given 

by 

( )12x HHW −−=
                               (18) 

Numerical Methods: 

There can be up to three roots for V(T,P) of eq. (2); 

the largest of which corresponds to the gas phase, the 

smallest to the liquid phase, and the intermediate one 

(which corresponds to a mechanically-unstable state 

of negative compressibility) has no physical 

significance. The largest root is typically about three 

to four orders of magnitude larger than the smallest 

one such that in computational work solving for 

V(T,P) makes the problem an ill-conditioned 

calculation. However, substituting eq. (6) into eq. (2) 

and simplifying, gives eq. (19). 

0)()32()1( 32223 =−−−−−+−− BBABZBBAZBZ
 

  (19) 

Eq. (19), like eq. (2), can possess up to three roots in 

Z(T,P), which correspond to those of V(T,P); 

however, with respect to Z(T,P), the difference 

between the largest and smallest roots is at most one 

order of magnitude and computationally leads to a 

well-posed problem. Therefore, we first solved eq. 

(19) and (8), successively, by iteration until 

convergence is achieved in eq. (8); this gives the exit, 

or final, temperature, T2. Eq. (19) was solved by the 

so-called modified Richmond method (Edmister and 

Lee, 1984) and in solving that equation for Z, 

iteration was stopped when
6

10)(
−≤ZF . Equation 

(8) was solved by the Newton-Raphson method 

(Faires and Burden, 1993) and iteration was 

terminated when
5

10)(
−≤TF . 

 

A number of calculations were performed in order to 

validate the accuracy of the expressions derived in 

this work and their computational implementation. 

All algebraic expressions derived here for derivative 

properties were compared with values obtained from 

numerical differentiation, using the five-point 

midpoint formula. For the second derivatives 

properties, a three-point mid-point formula was used 

instead. Typically, values obtained from numerical 

differentiation agreed with the algebraic analogue up 

to the 4th or 5th decimal place. We calculated 

compressibility factors for methane along a number 

of isotherms using sections of the program code 

employed in this work and the results were compared 

with the data of Monago (2007); agreement of 1 – 3 

% errors expected of a cubic equation were obtained. 

Finally, for reversible adiabatic compression, exit 

temperatures obtained from eq. (8) were used to 

calculate the entropy change for the process 

concerned and in all the cases that we investigated, 

the condition ∆S = 0 was satisfied to the 5th or 6th  

decimal place. 

 

RESULTS AND DISCUSSION 

The results obtained were correlated in terms of the 

temperature – pressure exponent method; namely, 

�� ��⁄ = 	
� 
�⁄ ��                      (20) 

Two assumptions were made to derive eq. (20); 

namely, that the gas is ideal, and that the ratio of the 

two principal heat capacity functions, γ = Cp/Cv, is a 

constant, independent of temperature. For an ideal 

gas, γ and m are related by: 
�� = 1 	1 − ��⁄ . 
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Fig. 1: Calculated isentropic temperature – pressure 

diagram of argon 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Calculated isentropic temperature – pressure 

diagram for N2 

 

 

Monatomic gases: The second of the two 

assumptions made above with respect to eq. (20) is 

unassailable for monatomic gases of which argon is 

prototypical. Fig 1 shows that for argon, the 

isentropic temperature – pressure exponent is, to a 

high degree of accuracy, linear and the slope is a 

constant, independent of temperature and density, in 

accordance with eq. (20). Furthermore, Fig. 1 

predicts a value of γ = 1/(1-m) that equals its 

theoretical value of 1.67; see also table 2. Therefore, 

one may reasonably conclude that in gas 

compression, it is the temperature dependence of the 

heat capacity ratio that determines the exponent and 

that residual contribution to properties plays a 

relatively minor role. 

 

Diatomic gases: For gases composed of rigid 

molecules, provided that the quotient T/Θrot
 (Where 

Θrot
 is the rotational characteristic temperature) is 

sufficiently high for the classical approximation to be 

valid, the variation of γ with temperature arises solely 

from the vibrational contribution to the partition 

function. A rigid diatomic molecule has one 

vibrational mode; for N2, the vibrational 

characteristic temperature, Θvib
 = 3340 K; therefore, 

the vibrational contribution to heat capacity may be 

given by: 

��,��� − ��,��� = ��1 − 2Θ��� �⁄ � 

 (21) 

One may see from eq. (21) that for a typical diatomic 

molecule, the assumption that γ is independent of 

temperature is a good one, provided that temperature 

is not greater than about 1000 K. N2 is the 

prototypical linear diatomic molecule and its 

isentropic temperature – pressure diagram is 

displayed in Fig. 2 from which it is seen that the 

present results follow eq. (20) with good accuracy. 

 

. 

Polyatomic gases: CO2 has four vibrational modes, of 

which two are degenerate, the vibrational 

characteristic temperatures are: 960 K, 960 K, 1998 

K and 3380 K; for this molecule, the vibrational 

contribution to heat capacity may be approximated by 

the expression 

��,��� − ��,��� = � ∑ �1 − 2� + 	3� 2⁄ ��#$
 %�    

 (22) 

 

Where, xi = Θvib,i
/T. From eq. (22) we see that the 

vibrational contribution to heat capacity is a function 

of temperature. Fig. 3 shows the isentropic 

temperature – pressure diagram for CO2 from which 

it is seen that whereas the exponent remains 

reasonably linear, it is not a constant. Other 

polyatomic gases investigated were CH4, C2H4 and 

C2H6. 

 

 
Fig 3: Isentropic temperature - pressure diagram for 

CO2. 
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Mixtures: The petroleum industry in Nigeria uses 

‘apparent molecular weight’ of a gas mixture as a 

parameter to perform compressor calculations (Ikoku, 

1984). The proposition is that if two mixtures have 

the same value for this parameter, they will also have 

the same compression characteristics. To test this 

hypothesis, we have constructed two natural gas 

mixtures, which have the same apparent molecular 

weight, but have different compositions; table 1. The 

mixtures are identified as mixture I and II. 

 

Table 1: Two natural gas with different compositions, 

but identical apparent molecular weight 

Component Mole fraction 

Mixture 

I 

Mixture II 

CH4 0.83 0.78 

C2H6 0.07 0.05 

C3H8 0.05 0.03 

n-C4H10 0.05 0.02 

H2S 0 0.03 

N2 0 0.06 

C02 0 0.03 

 

According to the above hypothesis, mixture I and II 

should have the same isentropic temperature – 

pressure exponent; however, as table 2 shows, the 

mixtures gave different values for the exponents m 

and γig
. Furthermore, Fig. 4 and 5 show that the 

mixtures have different isentropic temperature – 

pressure exponent diagrams. 

 

Table 2: Comparison of theoretical and calculated 

isentropic temperature – pressure  exponents γtheor
 = 

theoretical value of γ; γcalc
 = value of γ obtained in 

this work. 

Substance M 
&'()*  
+,-+  

Ar 0.4 1.67 1.67 

N2 0.27 1.40 1.37 

CO2 0.2 1.20 1.25 

CH4 0.2 ± 0.05 1.20 1.26 ± 0.01 

C2H4 0.17 ± 0.1 1.20 1.205 ± 0.015 

C2H6 0.14 ± 0.1 1.20 1.165 ± 0.015 

 

Table 2 summarizes the results obtained in this work 

for the isentropic temperature – pressure exponents of 

some gaseous substances, while fig. 6 plots the 

differences between exit temperatures in the 

compression of mixture I and II as functions of 

temperature. 

 

 

 
Fig 4: Temperature - pressure diagram for 

mixture I 

 
Fig 5: Temperature - pressure diagram for 

mixture II 

 

 
Fig 6: Deviations in exit the temperatures of 

mixture I and II as a function of compression 

ratio. 

 

Conclusion:  

Using the Peng-Robinson EOS and the entropy 

balance method, we derived a computational 

expression for exit temperatures in the reversible 

isentropic compression of real gases between fixed 

pressure limits. Calculations were performed to 

determine T2 and Wx for the following gases: Ar, N2, 

CH4, CO2, C2H4 and C2H6. It was shown that, while 

the temperature – pressure exponent method gave 

useful results for monatomic and diatomic gases, it 
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was rather approximate for polyatomic gases because 

the exponent turned out not to be a constant for the 

latter set of gases. Further, the results obtained in this 

work show that the use of apparent molecular weight 

to correlate compressor calculations for gaseous 

mixtures, while it works well for natural gas 

composed entirely of hydrocarbons, it may lead to 

significant error if applied to natural gas that contains 

inorganic gases. 
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