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ABSTRACT: The purpose of this paper is to provide the different types of Hardy-Littlewood Maximal 

Functions, the relationship between them and the corresponding extension of ℝ� of the Hardy-Littlewood maximal 

function.  We also give the generalization and the modification of Hardy-Littlewood maximal function. 
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Maximal functions arise very natural in analysis, for 

proving theorems about the existence almost 

everywhere of limits, for controlling pointwise 

important objects such as the Poisson Integrals or for 

controlling, not pointwise but at least in average, 

other basic operators such as singular integral 

operators. The model example of existence almost 

everywhere of limits is the Lebesgue differentiation 

theorem: 

���� = lim�→�
1

|���, ��| � ������
���,��

 

This property is intimately related to the study of 

certain properties of the Hardy-Littlewood maximal 

function. It is a classical mean operator, and it is 

frequently used to majorize other important operators 

in harmonic analysis. There are other almost 

everywhere convergence problems in mathematics: 

Fourier series, Dirichlet problem, the heat equation, 

the Schrodinger equation, conjugate functions, 

Hilbert transforms, ergodic theory, harmonic 

functions, singular integrals etc. All of them have the 

same pattern; we are interested in maximal operator. 

The key property to understand the Hardy-Littlewood 

maximal operator is the so called “weak type” 

estimate or property of M. Several mathematicians 

have worked on Hardy-Littlewood maximal 

functions. For example (Mingquan, 2016) proof that 

for 1 < � < ∞, the �� norm of the truncated centered 

Hardy-Littlewood maximal operator ��  equals the 

norm of the centered Hardy-Littlewood maximal 

operator for all 0 < " < ∞. (Martin-Reyes, 1993) 

gives simple proof of the characterization of the 

weights for which the one-sided Hardy-Littlewood 

maximal functions apply ���#� into���#�, where 

W is a nonnegative measurable function. We will like 

to extend the existing work in (Martin-Reyes, 1993) 

by looking at the generalization and modification of 

Hardy-Littlewood maximal functions. 

 

Hardy-Littlewood Maximal Function 

Defintion 1.1: Given � ∈ �%& ' �ℝ�, we define 

 

����� = sup�∈�
1

|�| � |����|��
�

              �1� 

where B is an integral containing x, and |�| is the 

Lebesgue measure of B. The function )(xMf  is 

called the maximal function of Hardy-Littlewood and 

the operator 

MffM a:  

It is called Hardy-Littlewood’s maximal operator. M 

is not linear but sub-linear in the sense that 

��� + ,� ≤ �� + �,, ��"�� = |"|�� 
 

Proof 

����� = sup�∈�
1

|�| � |����|��
�

 

��� + ,���� = sup�∈�
1

|�| � |���� + ,���|��.
�

 

≤ sup�∈�
1

|�| � �|����| + |,���|���
�

 

= sup�∈�
1

|�| � |����|��
�

+ sup�∈�
1

|�| � |,���|��
�  

= ����� + �,��� = ��� + �,���� ∴ ��� + ,� ≤ �� + �,                                     �2� 
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Also 

��"����� = sup�∈�
1

|�| � |"����|��
�

 

= sup�∈�
1

|�| � |"||����|��
�

 

= |"| sup�∈�
1

|�| � |����|��
�

 

= |"|����� ∴ ��"�� = |"|��                                                   �3� 

Combining (2) and (3) the result follows 

immediately. 

 

Definition 1.2: The one-sided maximal functions �2� and �3� of a function � ∈ �%& ' �ℝ� is given by 

(Sawyer, 1986) as 

�2� = sup45�
1
ℎ � |�|�24

�
            

�3� = sup45�
1
ℎ � |�|�

�34
            

The operators �2���� and �3���� are interesting 

because they control some one-sided operators such 

as singular integrals with kernels supported in �−∞, 0� or �0, ∞�. 

The results of the operators �82and �83  are defined 

as 

 

�82���� = sup45�
9 |�|,�24

�
9 ,�24

�
            

�83���� = sup45�
9 |�|,�

�34
9 ,�

�34
       

Where g is a positive locally integrable function. 

 

Lemma 1.1: The function �� is lower-

semicontinuous, hence measurable. 

 

Proof 

Let ����� > ;. Then there is a ball B containing x 

such that 

1
|�| � |����|�� > ;

�
 

Then ����� > ; for every � ∈ �. 
 

Definition 1.3: The classsical Hardy-Littlewood 

maximal function is given by 

�<���� = sup�5�
1

|���, ��| � |����|��
���,��

     
i.e limited to the averages of |�| over balls centered 

at x. 

clearly, �<���� ≤ ����� �<� is not necessarily lower-semicontinuous. The 

measurability of �<� follows from the fact that the 

map 

=��, �� = 1
|���, ��| � |����|��

���,��
               �4� 

is continuous in �, so that the sup in (4) can be 

limited to � ∈ ℚ. 

 

Definition 1.4: The centered Hardy-Littlewood 

maximal function is given by 

� ���� = sup�5�
1

|���, ��| � |����|��
���,��

      �5� 

and the uncentered Hardy-Littlewood maximal 

function is 

����� = sup�∈�
1

|�| � |����|��
�

       
It is clear that 2�� ���� ≥ ����� ≥ � ���� 

holds for all � ∈ ℝ�. Both � and �  are sublinear 

operators. It is very difficult to calculate the exact 

norm of � and � . The basic real-variable construct 

was introduced by (Hardy and Littlewood, 1930)  for B = 1 and (Wiener, 1939) for B ≥ 2. 
 

Definition 1.5: Trucated Centered Hardy-Littewood 

maximal operator is given by 

�� ���� = sup�C�C�
1

|���, ��| � |����|��
���,��

        �6� 

and the Trucated Uncentered Hardy-Littlewood 

maximal operator ������
= sup�C�C�,|E3�|C�

1
|���, ��| � |��F�|�F

��E,��
             �7� 

 

For � ∈ ℝ� and some real positive number ". 
We can deduce from (5), (6) and (7) that � ���� ≥ �H ���� ≥ �� ����                              �8� 

and ����� ≥ �H���� ≥ ������                                �9� 

∀ � ∈ ℝ�, provided " ≤ ;. 
It follows from (8) and (9), as the sublinear operators 

 ||� ||LM�ℝN�→LM�ℝN� ≥ ||�H ||LM�ℝN�→LM�ℝN�≥ ||�� ||LM�ℝN�→LM�ℝN�             �10� 

and 
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||�||LM�ℝN�→LM�ℝN� ≥ ||�H||LM�ℝN�→LM�ℝN�≥ ||��||LM�ℝN�→LM�ℝN�              �11� 

If " ≤ ;, for 1 < � ≤ ∞. 
This shows that for 1 < � ≤ ∞, the ���ℝ�� norm of 

the centered Hardy-Littlewood maximal operator is 

greater or equals to trucated centered Hardy-

Littlewood maximal operator. Also, for 1 < � ≤ ∞, 

the �� norm of the uncentered Hardy-Littlewood 

maximal operator is greater or equals to trucated 

uncentered Hardy-Littlewood maximal operator. 

 

Relationship Between Hardy-Littewood Maximal 

Operators 

 

Theorem 2.1: Let ��  be defined by (6) and " > 0. 

Then ||�� ||LM�ℝN�→LM�ℝN�  = ||� ||LM�ℝN�→LM�ℝN� 
 

That is, the norm of Trucated Centered Hardy-

Littlewood maximal operator and the Trucated 

Uncentered Hardy-Littlehood maximal operator are 

exactly the same on a Lebsegue measure[6]. 

 

Theorem 2.2: Let ��  be defined by (6) and " > 0. 

Then ||�� ||LO�ℝN�→LO,P�ℝN�  = ||� ||LO�ℝN�→LO,P�ℝN� 
 

Theorem 2.3: Let �� be defined by (7) and " > 0. 

Then ||��  ||LO�ℝN�→LO,P�ℝN�  = ||�||LO�ℝN�→LO,P�ℝN� 
 

Theorem 2.4: Let �� be defined by (7) and " > 0. 

Then ||�� ||LM�ℝN�→LM�ℝN�  = ||�||LM�ℝN�→LM�ℝN� 
 

Lemma 2.1: Suppose that Q is a positive measure on 

a R-algebra S. If T' ⊂ TV ⊂ TW … T� ∈ S, and T = Y T�Z�[' , then lim�→Z Q�T�� = Q�T� 

 

Lemma 2.2: Suppose that the operators �  and ��  

are defined as in (8) and (10). The equality �� ��\� = lim�→Z ��� ��\� 

Holds for all � ∈ ���ℝ�� and \ > 0. 
 

Proof 

For a fixed � ∈ ℝ�, by the definition of �  in (8), 

associate to each ] a ball ���, �̂ � which satisfies 

1
|���, �̂ �| � |����|�� > � ���� − ]

���,�_�
                       

Now taking " > �̂ , it follows from the definition of ��  that 

 

�� ���� ≥ 1
|���, �̂ �| � |����|�� > � ���� − ]

���,�_�       
 

Note that �� ���� increases as " → ∞. Thus we have 

 lim�→Z �� ≥ ��                        �12� 

Clearly, we have 

 �� � ≤ ��                               �13� 

 

Combining (12) and (13), we have 

 lim�→Z �� � = � � 

 

Then 

 lim�→Z �� � = � � 

 

We set 

 T� = `� ∈ ℝ�: �� ���� > \b 
and T = `� ∈ ℝ�: � ���� > \b 

 

We have T� ⊂ T�2' for B = 1,2, …, and 

 T = Y T�Z�[' . It follows from Lemma 2.1 and the 

definition of the distribution function that �� ��\� = |T| = lim�→Z|T�|
= lim�→Z ��� ��\� = lim�→Z ��� ��\� 

This is our desired result. 

 

Generalization Of One-Sided Maximal Function 

The natural generalization of �2 in ℝ� is the 

following: given � = ��', �V, … ��� we have 

�2 ⋯2���� = sup45�
1

ℎ� � |����|��
de�4�

                                 
 

Where 

 
 f��ℎ� = g�', �' + ℎ� × g�V, �V + ℎ� × … × g��, �� + ℎ� 

 

In ℝ we have two one-sided operators. In ℝ� we 

obviously have 2� one-sided operators that we do no 

write explicitly. 

 

Given � = ��', �V, … ��� ∈ ℝ�, let us assume 
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i2 ⋯2���� = sup45�
1

ℎ� � |����|��
dej�4�

                                
 

Where 

 
 f�2�ℎ� = g�' + ℎ, �' + 2ℎ� × g�V + ℎ, �V + 2ℎ� × … × g�� + ℎ, �� + 2ℎ� 

 

For B = 1, �2 and i2 are equivalent. 

It is clear that i2 ⋯2���� ≤ 2��2 ⋯2���� but there 

is no constant k > 0 satisfying 

 ki2 ⋯2���� ≥ �2 ⋯2���� 

for B > 1. 
 

If f = g�', �' + ℎ� × g�V, �V + ℎ� × … × g�� , �� +ℎ� is a cube denote 

f3 = l�', �' + ℎ
2m × l�V, �V + ℎ

2m × … × g�� , �� + ℎ
2� 

and 

f2 = l�' + ℎ
2 , �' + ℎm × l�V + ℎ

2 , �V + ℎm × … × g�� + ℎ
2 , �� + ℎ� 

Let T�2 = `f��n�op ∶ � ∈ f3b 

The one-sided dyadic maximal function is defined by 

�r2 ⋯2���� = supd∈sej
1

|f2| � |����|��.
dj

                                    
�r���� = supd rEtru :�∈d

1
|f2| � |����|��.

d
                             

�r  is the classical dyadic maximal operator. 

 

Theorem 3.1: Let )(1
RLf ∈ . Then, for every 

0>t , the set 

}>)(:{= txMfxEt R∈  

satisfies the following 

dxxf
t

E
t

E
t |)(|

2
|| ∫≤

 

 

Theorem 3.2: Let f measurable in R  and 0>t . 

Then 

dxxf
t

E t
xfx

t |)(|
4

||
}

2
)|>(:|{∫≤  

Proof 

We can assume that 
1Lf ∈ . Define 







otherwise0
2

|>)(|if)(
=1

t
xfxf

f  

Then, 21= fff + , with 
2

|| 2

t
f ≤   

and 1,2=,1
iLfi ∈  we have 

2
2

t
Mf ≤   

and 

2
)()()()( 121

t
xMfxMfxMfxMf +≤+≤  

Then 

}
2

>)(:{ 1

t
xMfxEt ⊂  

Now apply Theorem 3.1 to 1f  to obtain 

dxxf
t

dxxf
t

dxxf
t

t
xMfxE

t
xfx

t
xfx

t

|)(|
4

=

|)(|
4

=

|)(|
4

|}
2

>)(:{|||

}
2

)|>(:|{

1
}

2
)|>(:|{

1

1

∫

∫

∫≤

≤

R

 

Theorem 3.3: Given ∞<<1 p  there exist a 

constant pC  such that for every 
pLf ∈  

p
L

pp
L

fCMf |||||||| ≤  

Proof 

We will use distribution function, Theorem 

3.1, 3.2 to obtain 

dxxf
p

p

dxdtxftp

dxdtxftp

dxdtxf
t

tp

dttxMfxtpdxxMf

p
p

p
xf

t
xfx

p

t
xfx

p

pp

|)(|
1

2
4=

|)(|4=

|)(|4=

|)(|
4

|}>)(:{|=)((

1

2
)|(|2

00

}
2

)|>(:|{

1

0

}
2

)|>(:|{

1

0

1

0

∫

∫∫

∫∫

∫∫

∫∫

−

≤

−

−
∞

−
∞

−
∞

−
∞

R

R

 

Modified Hardy-Littlewood Maximal Function 

Defintion 4.1: Let f be a nonnegative extended real-

valued Lebesgue measurable function on ℝ and \ be 

Lebesgue for ℝ. Then 

������ = sup v 1
\�w� � ��\: w = g�, xy.

z
, � < x < ∞{           

�%���� = sup v 1
\�w� � ��\: w = gx, �y.

z
, −∞ < u < x{       
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����� = sup } 1
\�w� : I is a closed interval containing x�   

������, �%���� and ����� are three diferent 

maximal averages of the functions f. All of the 

maximal theorems are inequalities giving bounds for 

the integral of one of the maximal functions 

composed with a monotonic function. The mapping ��, �% and � carry certain function spaces to others. 

 

Theorem 4.1: �� = �n�����, �%�� 

See the proof in (Keith, 1965). 

 

Definition 4.2: Let f be a locally integrable function 

on a metric measure space ��, Q�. Then the k times 

modified centered Hardy-Littlewood maximal 

function ��� of f is defined as follows 

��� = sup�5�
1

Q����, ���� � |����|�Q���
���,��

                   
We call the operator �� the k times modified 

centered Hardy-Littlewood maximal operator. The k 

times modified uncentered Hardy-Littlewood 

maximal function ��� of f is defined as follows 

��,�  ���� = sup�∈��E,��
1

Q����, ���� � |����|�Q���
���,��

 

Clearly, the pointwise ineqiualities ��� ≤ �����< ≤ ��  
and ��,� � ≤ ���,� ��< ≤ ��  
holds for any locally integrable function f on ��, Q�. ��,� ���� is lower semicontinuous for any locally 

integrable function f. 

 

Defintion 4.3: The n-dimensional maximal operator 

M is said to satisfy a weak type(1,1) inequality if 

there exists a constant c such that for every � ∈�'�ℝ�� and every " > 0 we have "|`�� > "b| ≤ p||�||' 

The corresponding extension to ℝ� of the Hardy-

Littlewood maximal function is given by  

����� = sup�5�
1

|���, ��| � |����|��
���,��

 

As in the one dimensional case this definition 

corresponds to the centered maximal function and for 

the uncentered we require the basis simply to contain 

the point. Note that the uncentered is contained in a 

centered ball with double radius. More generally, one 

can start with a fixed set B containing the origin and 

define a maximal function using all the family of sets 

obtained using dilations and translations of B: 

������ = sup�5�
1

|��| � |��� + ��|��
��

 

 

If there are two balls centered at the origin with radii �'and �Vsuch that ��0, �'� ⊂ � ⊂ ��0, �V�, then �� 

is equivalent to M in the sense that the quotient �����/������ is bounded above and below by 

constant depending only on �', �Vand the dimension, 

and not on f or x. In particular, this is true when B is 

the ball defined by an �� −norm in ℝ�. 

 

Conclusion: In this paper, the research shows the 

centered Hardy-Littlewood maximal function and 

uncentered Hardy-Littlewood maximal funtion 

together with their k times modification and the 

generalization of one-sided maximal functions.  

 

REFERENCES 
Fulvio, R (2004). Hardy Spaces In One Complex 

Variable. Interscience Publishers, lnc., New 

York 

 

Hardy, GH; Littlewood, JE(1930). A maximal 

theorem with function-theoretic applications, 

Acta Math, 54:81-116. 

 

Keith, P (1965). Maximal Theorems of Hardy and 

Littlewood, University of   Washington and 

California Institute of Technolog:648-660. 

 

Maria, L; Martin-Reyes, FJ (2017). A note  On 

weighted inequalities for a one-sided   maximal 

operator in ℝ� , Union Matematica 

Argentina,58,(2):253-258. 

 

Martin-Reyes, FJ (1993). New proofs of weighted 

inequalities for the one-sided Hardy-Littlewood 

maximal functions, Americal Mathematical 

Society,117, (3): 691-698. 

 

Mingquan, W; Xudong, N; Di, W; Dunyan, Y (2016). 

A note on Hardy-Littlehood maximal  Operators, 

Journal of  Inequalities Applications, 21:1-13. 

 

Sawyer, E (1986). Weighted inequalities for the one-

sided Hardy-Littlewood Maximal Functions, 

Trans. Amer.  

 

Wiener, N (1939). The ergodic   theorem. Duke 

Math. J. 5:1-18. 

 


