日粮水平对中华鳖稚鳖生长的影响

雷思佳1,叶世洲2

(1. 深圳职业技术学院 生物应用工程系,广东 深圳 518055; 2. 深圳海洋世界有限公司,广东 深圳 518083)

摘要:于 2001 年 12 月购买当年繁殖的中华鳖($Trionyx\ sinensis$)稚鳖($28.66\sim53.37\ g$),在 30 %水温下进行摄食 – 生长实验(实验时间为 $56\ d$),设饥饿、1%、2%、4%和饱食 5 个日粮水平,研究了摄食水平对中华鳖稚鳖生长和转化效率的影响。方差分析表明:摄食水平对中华鳖稚鳖的特定生长率和转化效率均有显著影响。稚鳖的湿重、干重、蛋白质和能量的特定生长率均随摄食水平的增加呈二次曲线增加,摄食率(RL)-干物质特定生长率(SGR_d)的关系模型可表示为: $SGR_d=0.0832RL^2+1.0795RL-1.8779$ (n=25, $r^2=0.906$,F=105.46);当摄食率为 6.97%、6.49%、6.08%和 6.34%时,稚鳖湿重、干重、蛋白质和能量的特定生长率分别达到最大值。1%组的各项转化效率均显著低于 2%和 4%组,干重和能量转化效率显著低于饱食组; 2%组的干重和能量转化效率显著高于 4%和饱食组。

关键词:中华鳖稚鳖;摄食水平;生长;转化效率

中图分类号:S966.5; O591.1 文献标识码:A 文章编号: O254 - 5853(2004)01 - 0043 - 05

Effect of Ration Level on Growth in Juvenile Soft-shelled Turtles, *Trionyx sinensis*

LEI Si-jia¹, YE Shi-zhou²

Department of Biological Applied Engineering , Shenzhen Polytechnic , Shenzhen 518055 , China ;
 Shenzhen Ocean World Ltd. Co. , Shenzhen 518083 , China)

Abstract: The growth trial of a 56-day period was conducted at 30 °C to investigate the effect of ration on growth and feed conversion efficiency in juveniles Trionyx sinensis , which initial body weights ranged from 28.66 to 53.37 g. They were fed commercial soft-shelled turtle diet twice a day at five ration levels (starvation , 1% , 2% , 4% and satiation). ANOVA showed that specific growth rate (SGR) and conversion efficiency (K) were significantly affected by the ration level. SGR increased quadratically with increasing ration , and the relationship between SGR for dry matter (SGR_d) and ration level (RL) could be expressed as the follow: $SGR_d = -0.0832RL^2 + 1.0795RL - 1.8779$ (n = 25 , $r^2 = 0.906$, F = 105.46). The maximum SGR for wet matter , dry matter , protein and energy appeared when ration levels were 6.97% , 6.49% , 6.08% and 6.34% , respectively. All Ks at 1% ration group were significantly lower than those at 2% and 4% , and Ks for dry matter and energy were lower than the satiation; Ks for dry matter and energy at 2% were significantly higher than those at the satiation.

Key words: Juvenile Trionyx sinensis; Ration level; Growth; Conversion efficiency

生长虽然是很容易观察和测量的指标,但作为 机体最为复杂的活动之一,它是机体一系列复杂行 为和生理活动过程结果的反映,是外界环境对机体 影响结果的综合指标。生态因子作用于动物,使动 物机体发生一系列生理生化反应,其最终的效果可 以从动物的生长状况表现出来。饵料类型(Cui et al, 1994, 1996) 摄食水平(Zhu et al, 2000) 温度(Malloy & Targett, 1994)等都会对摄食与生长的关系产生影响。

水生动物中对鱼类生长的研究报道相对较多,

基金项目:国家自然科学基金重大项目(39430150);广东省教育厅第二批千、百、十人才培养计划项目;深圳市科技局项目(00009824)

^{*} 收稿日期:2003-08-11;接受日期:2003-12-02

而对鱼类的摄食 - 生长模型也有多种表示方法:多 数作者倾向于使用曲线模型(Brett & Groves, 1979), 也有许多作者使用对数模型(Allen & Wootton, 1982), 当然用直线方程的也较为普遍 (Niimi & Beamish, 1974). Malloy & Targett (1994) 对夏鲆(Paralichthys dentatus)摄食与生长关系的 研究结果表明,当温度升高时,摄食量增加,但在 高摄食水平时饵料利用率明显降低,生长-摄食出 现曲线关系;他们认为,温度对鱼类摄食-生长关 系的影响是通过温度→摄食率→饵料利用率的途径 而发生作用的。而饵料类型对鱼类摄食 - 生长模型 的影响则是通过影响饲料的转化效率而发生作用 的,在高摄食率时这种影响尤为明显(Zhu et al, 2000; Cui et al, 1994, 1996)。由于动物的种类及 其发育阶段、饵料类型、投喂方式、水温等诸多因 素都会影响转化效率,因此当这些因素不同时,转 化效率就会出现较大差异。多数研究表明转化效率 在中间摄食水平时最高(Brett & Groves, 1979; Cui, 1989; Jobling, 1994)

中华鳖(Trionyx sinensis)是我国名贵水产珍品,其肉味鲜美,营养丰富,滋补力强(Liu et al , 1997),深受人们的喜爱。然而,由于病害和不健康的养殖模式,使其食用、药用价值受到严重影响。开展生态因子对中华鳖生长影响的研究,可帮助我们了解外界因素对中华鳖的影响效果。本文旨在研究摄食水平对中华鳖稚鳖生长及转化效率的影响,以期为该种的健康养殖模式的建立提供基础资料。

1 材料与方法

本研究在中华鳖的最适生长温度(30 $^{\circ}$ C)(Li et al, 1995; Tong et al, 1997)下进行生长实验,养殖用水符合中华鳖生长所需要的适宜水质(Tong et al, 1997)。

1.1 实验设备

实验在 37.5 L 玻璃水簇箱($50 \text{ cm} \times 25 \text{ cm} \times 30 \text{ cm}$)中进行。实验室的光照周期用日光灯控制,光照为每天 12 h。实验用水为曝气的自来水,每天早晚用温度计测定温度 2 次,实验室的室温用空调控制在 30 °C,水温用上海产 WMZK-01 型控温仪及玻璃钢水槽($150 \text{ cm} \times 65 \text{ cm} \times 45 \text{ cm}$)水浴控温。

1.2 材料

于 2001 年 12 月自深圳市南山区水产技术推广

站购买当年繁殖的中华鳖($Trionyx\ sinensis$)稚鳖($28.66\sim53.37\ g$)。实验室驯化一个月,投喂中华鳖稚鳖配合饲料,将温度以 $1\sim2\ {\rm C/d}$ 的速度逐渐升至实验温度($30\ {\rm C}$),然后再饲养 1 周后开始实验。实验用饲料同上,但加入 0.5% 的 ${\rm Cr}_2{\rm O}_3$ 作为外源指示剂,混匀后使用。中华鳖稚鳖配合饲料由深圳新光饲料有限公司提供,主要成分为高筋面粉、纯鱼粉、虾肉粉、肝脏粉、豆粕、维生素等,蛋白质、脂肪含量(%干重)和比能值(${\rm kJ/g}$)分别为 45.62%、4.70% 和 17.59%。驯化及实验期间每 $2\ {\rm d}$ 换水 1 次,水中溶氧保持在 $5\ {\rm mg/L}$ 以上,pH 值 $7.7\sim8.0$ 。

1.3 实验设计与方法

实验设饥饿、1%、2%、4%和饱食5个摄食 水平,饥饿组在实验期间停食,1%、2%和4%组 每天按稚鳖体重的 1%、2%和 4%的量投喂饲料, 饱食组的投喂量以投喂 2 h 后饲料台上有剩饵为 度。实验开始时,先将鳖饥饿2d,然后称重(精 确到 $0.01\,\mathrm{g}$);同时取 5 只体重相近的鳖作为对照, 烘干称重,测定其干物质、蛋白质和能量含量,用 以估计实验开始时鳖体的干物质、蛋白质和能量含 量。用木制小凳做饲料台,饲料台高出水面1cm, 每天称取确定量的饲料,按与水1:1.1 的比例制成 长条形,于10:00和17:00分两次投喂。投喂2 h后将剩饵吸出,烘干称重。在空白对照水族箱 中,测定饲料的溶失率,以校正剩饵重量。用虹吸 法每天收集粪便,烘干称重。为减少粪便在水中营 养成分的溶失造成的误差,用于测定消化率和能量 含量的粪便为排出后 1 h 内收集的样本。

实验时间为 $56\,\mathrm{d}$, 实验结束时先将鳖饥饿 $2\,\mathrm{d}$, 然后称重,烘干,磨碎。测定实验鳖和对照鳖的氮、能量含量,以及饲料的氮、能量和脂肪含量,每个样本单独测定,平行测定 $2\,\mathrm{r}$, 取平均数,相对偏差超过 3% 则重测。氮含量用凯氏定氮法测定,脂肪含量用氯仿 — 甲醇抽提法测定(Cui,1989),能量含量用上海地质仪器厂产 XRY-1 型弹式热量计测定。蛋白质含量 = $6.25\,\mathrm{r}$ 、氮含量。

1.4 计 算

采用生物能量学研究的通常方法,同时测定动物的湿重(w) 干重(d) 蛋白质(p) 和能量(e) 含量的特定生长率(SGR) 和转化效率(K):

 $SGR = 100 \times (\ln S_t - \ln S_0)/t$

$$K = 100 \times (S_t - S_0) / \triangle F \times a$$

式中: S_t 为实验结束时鳖体的湿重、干物质、蛋白质含量或能量含量, S_0 为实验开始时的湿重、干重、蛋白质含量或能量含量,t 为实验天数, $\triangle F$ 为投喂饲料干重减去剩余饲料干重;在计算 K_w 、 K_d 、 K_p 、 K_e 时,a 分别为 1、2.1、饲料干物质蛋白质含量、饲料干物质能量含量。

用实际摄食率进行摄食率 – 特定生长率的回归分析。实际摄食率(%) = $100 \times$ 日摄食量/[(W_t + W_0)/2],式中 W_t 和 W_0 分别表示实验鳖的初始体重和实验结束时的体重。

2 结 果

2.1 生长情况

实验开始时,中华鳖稚鳖 5 个实验组的初始体重均无差异;实验结束时,饥饿组和 1%组的体重均显著低于 4%组和饱食组,2%组的体重与其他 4 组无差异(表1)。

摄食水平显著影响稚鳖的湿重、干重、蛋白质和能量的特定生长率,而且各项特定生长率均随摄食水平的增加而增加,饱食组的最高;除能量的特定生长率外,4%组湿重、干物质和蛋白质的特定生长率与饱食组无显著差异(表 1)。

稚鳖的特定生长率与摄食水平存在显著的相关 关系(P < 0.01),其湿重、干重、蛋白质和能量 的特定生长率与摄食率之间的关系均可以用直线方 程、二次方程和指数方程表示(P < 0.01),但以二次方程的决定系数($determination\ coefficient$)最高,直线方程的最低;因此,选择二次方程表述二者的关系,回归方程式如表 2。

利用二次方程得出中华鳖稚鳖的维持日粮分别为 1.67%(湿重) 2.07%(干重) 2.00%(蛋白质)和 2.24%(能量)。对二次方程求导,得到稚鳖的摄食率分别为 6.97%、6.49%、6.08%和6.34%时,其湿重、干重、蛋白质和能量的特定生长率分别达到最大值。

2.2 转化效率

摄食水平显著影响中华鳖稚鳖的湿重、干重、蛋白质和能量的转化效率:1%组的各项转化效率均显著低于2%和4%组,干重和能量转化效率显著低于饱食组;2%组的干重和能量转化效率显著高于4%和饱食组(表3)。

3 讨论

从表1可以看出,中华鳖稚鳖的特定生长率随日粮水平的增加而增加,饱食组(实际摄食率为5.63%)的最高;因此仅从表1看,稚鳖的摄食率-特定生长率模型似乎应该用直线方程来描述。然而事实上特定生长率不会随摄食率的增加而无限增加,于是我们分别推导出了稚鳖的特定生长率与摄食率的直线、二次和指数方程,发现3种模型均可用于表示两者的关系,但以二次方程表达最佳。对

表 1 摄食水平对中华鳖稚鳖生长的影响(平均数±标准误)
Table 1 Effect of growth in juvenile *Trionyx sinensis* (mean ± SE)

Table 1 Effect of growth in Juvenile Triony, smeasts (mean ± 5E)						
	摄食水平 Ration level					
	饥饿组 Starvation	1%	2%	4%	饱食组 Satiation	F _{4 20}
实际摄食率 Real ration	0	$1.64\pm0.02^{\mathrm{b}}$	$2.54\pm0.08^{\rm c}$	$4.52\pm0.24^{\rm d}$	$5.63 \pm 0.18^{\rm e}$	295.089**
初始体重 Inital body weight (g)	39.97 ± 97.94	40.45 ± 55.70	39.54 ± 72.06	44.22 ± 18.03	42.96 ± 258.52	0.299
实验结束体重 Final body weight (g)	33.98 ± 4.43 ^a	48.30 ± 3.84 ^a	$63.43 \pm 7.83^{\mathrm{ab}}$	98.11 ± 7.89^{b}	$101.79 \pm 28.81^{\mathrm{b}}$	4.698**
SGR_w	-0.29 ± 0.02a	0.26 ± 0.02 ^b	0.93 ± 0.01°	$1.38 \pm 0.16^{\rm cd}$	1.41 ± 0.19 ^d	39.541**
SGR_d	-0.80 ± 0.04^{a}	0.25 ± 0.06^{b}	$1.00\pm0.07^{\rm c}$	$1.52\pm0.15^{\rm d}$	$1.62\pm0.21^{\rm d}$	66.028**
SGR_p	-1.15 ± 0.05^{a}	$0.08 \pm 0.06^{\rm b}$	$0.88\pm0.09^{\circ}$	$1.30\pm0.25^{\rm cd}$	1.59 ± 0.19^{d}	65.117**
SGR_e	- 1.25 ± 0.13 ^a	$0.19\pm0.84^{\rm b}$	$1.38\pm0.09^{\circ}$	$1.46\pm0.27^{\rm c}$	$1.89 \pm 0.21^{\circ}$	64.361**

^{*} P < 0.05, ** $P < 0.01_{\circ}$

每一数字后的字母上标为 Duncan 多重比较结果;同行数据中有相同字母的平均数表示在 0.05 水平上无显著差异。 SGR_w 、 SGR_d 、 SGR_o 和 SGR_o 分别表示湿重、干物质、蛋白质和能量的特定生长率。

Letters after each value in the same row indicate results of Duncan's multiple comparisons. The same superscript letters indicate no significant differences (P > 0.05) between ration levels.

The specific growth rates of wet matter , dry matter , protein and energy are expressed as SGR_w , SGR_d , SGR_p and SGR_e , respectively.

表 2 中华鳖稚鳖特定生长率与摄食水平的回归方程($SGR = aRL^2 + bRL + c$)的系数(平均数, n = 25)

Table 2 Coefficients for the regression equations ($SGR = aRL^2 + bRL + c$) relating specific growth rate to ration level in juvenile *Trionyx* sinensis (mean, n = 25)

	a	b	c	r^2	$F_{2,22}$
SGR_w	-0.0512	0.7134	- 1.0473	0.831	54.03**
$\mathrm{SGR}_{\mathrm{d}}$	-0.0832	1.0795	- 1.8779	0.906	105.46**
$\mathrm{SGR}_{\mathrm{p}}$	- 0.0943	1.1460	- 1.9143	0.912	114.05**
$\mathrm{SGR}_{\mathrm{e}}$	-0.1105	1.4014	-2.5872	0.884	83.59**

^{**}P < 0.01°

SGR_w、SGR_d、SGR_D和SGR_e同表1。

 SGR_w , SGR_d , SGR_p and SGR_e are the same as Table 1.

表 3 摄食水平对中华鳖稚鳖转化效率的影响(平均数 ± 标准误)

Table 3 Effect of ration level on conversion efficiencies in juvenile *Trionyx sinensis* (mean \pm *SE*)

T. (*)						
K (%)	1%	2%	4%	饱食组	$F_{3,16}$	
$K_{\rm w}$	16.24 ± 3.71 ^a	36.31 ± 3.03 ^b	29.53 ± 5.63 ^b	25.82 ± 3.18 ^{ab}	4.1520*	
$K_{\rm d}$	3.10 ± 0.84^{a}	$13.08 \pm 1.03^{\rm b}$	$18.78 \pm 1.77^{\circ}$	$22.99 \pm 3.18^{\circ}$	24.798*	
$K_{\rm p}$	10.89 ± 2.63^{a}	$24.61 \pm 2.44^{\rm b}$	$22.30 \pm 3.78^{\rm b}$	16.53 ± 2.30^{ab}	4.621*	
$K_{\rm e}$	4.89 ± 6.45^{a}	$28.10 \pm 5.80^{\circ}$	$15.61 \pm 3.37^{\rm b}$	$18.20 \pm 2.43^{\rm b}$	10.976*	

^{*} $P < 0.05_{\circ}$

每一数字后的字母上标为 Duncan 多重比较结果;同行数据中有相同字母的平均数表示在 0.05 水平上 无显著差异。

表中 K 为转化效率, K_w 、 K_d 、 K_b 和 K_e 分别表示湿重、干物质、蛋白质和能量的转化效率。

Letters after each value in the same row indicate results of Duncan's multiple comparisons. The same superscript letters indicate no significant differences (P > 0.05) between ration levels.

K is conversion efficiency. The conversion efficiencies of wet matter , dry matter , protein and energy are expressed as K_w , K_d , K_p and K_e , respectively.

该二次方程求导得出,当摄食率分别为 6.97%、6.49%、6.08%和 6.34%时中华鳖稚鳖的湿重、干物质、蛋白质和能量的特定生长率分别达到最大值,摄食率达到上述水平后再继续增加,则特定生长率出现下降趋势。看来在本实验条件下,对中华鳖稚鳖的养殖投饵率以不超过 7% 为宜,否则不但达不到促进生长的效果,同时浪费饲料,而且还会污染水质,引发疾病。

Malloy & Targett (1994) 对夏鲆个体生长与摄食关系的研究结果表明,在低温(10℃)时两者关系为线性,在高温(10~16℃)时则为曲线关系。该实验饵料为冰冻糠虾肉,由于含有较高的蛋白质(干物质 67.9%)和能量,导致高摄食水平时饵料利用率降低。在低温时摄食量较少,表现不明显;但当温度升高时摄食量增加,高摄食水平时饵料利用率明显降低,生长-摄食出现曲线关系。本研究

用饵料为中华鳖稚鳖配合饲料,能量含量也较高,高摄食水平使转化效率降低,当摄食水平为 2%时,除干物质的转化效率外,其他各指标的转化效率均达到最高值。这可以部分地解释为什么二次方程表达的中华鳖稚鳖摄食 – 生长关系决定系数最高,与夏鲆(Malloy & Targett, 1994)的情况有类似之处。

本研究表明,除干物质饲料转化效率外,中华鳖稚鳖的转化效率随摄食水平的增加呈 ①型变化,在 2%组(摄食率相当于最大摄食水平的 43%)达到最大,这与大多数鱼类的情况相似(Brett & Groves,1979; Cui,1989; Jobling,1994)。中华鳖稚鳖在最大摄食水平时干物质、蛋白质和能量的转化效率分别为 22.99%、16.53%和 18.20%,而多数鱼类的转化效率在 10%~25%(Welch,1968),也与鱼类的情况接近。

参考文献:

- Allen JRM, Wootton RJ. 1982. The effect of ration and temperature on the growth of three-spined stickleback, Gasteosteus aculeatus L [J]. J. Fish Biol., 20: 409 – 422.
- Brett JR , Groves TDD. 1979. Physiological energetics [A]. In: Hoar WS , Randall DJ , Brett JR. Fish Physiology , Vol.8 [M]. New York: Academic Press. 279 – 352.
- Cui YB. 1989. Bioenergetics of Fish: Theory and methods [J]. Acta Hydrobiologica Sinica, 13(4): 369 383. [崔奕波. 1989. 鱼类生物能量学的理论与方法. 水生生物学报, 13(4): 369 383.]
- Cui Y , Chen S , Wang S . 1994. Effect of ration size on the growth and energy budget of the grass carp , Ctenopharygodon idellla V [J]. Aquaculture , 123: 95 – 107.
- Cui Y , Hung SSO , Zhu X . 1996. Effect of ration and body weight size in the energy budget of juvenile white sturgeon [J]. J. Fish Biol. , 49: 863 – 876.
- Jobling M. 1994. Fish Bioenergetics [M]. London: Chapman & Hall.
- Li LC, Yang ZG, Qin YL, Hu GX, Lin ZD, Li SF. 1995. Trionyx sinensis and environment [J]. Reservoir Fisheries, 4:25-27. [李林春,杨治国,秦玉丽,胡国祥,林志定,李思发. 1995.中华鳖与环境. 水利渔业,4:25-27.]
- Liu ST, Nie XT, Liu GL. 1997. Determination of the biochemistry Indices on different tissues of *Trionyx sinensis* and investigation of its

- nutritional and medical use [J]. *J. Shanxi Agric. Univ.*, **17** (1): 55 58. [刘拴桃, 聂向庭, 刘桂林. 1997. 中华鳖不同组织器官生化指标的测定及其营养和药用价值的探讨. 山西农业大学学报, **17** (1): 55 58.]
- Malloy KD, Targett TE. 1994. Effect of ration limitation and low temperature on growth, biochemical condition, and survival of juvenile summer flounder from two Atlantic coast nurseries [J]. Transactions of the American Fisheries Society, 123: 182-193.
- Niimi AJ, Beamish FWH. 1974. Bioenergetics and growth of large-mouth bass Micropterus salmoides in relation to body weight and temperature [J]. Canadian Journal of Zoology, 42:447-456.
- Tong JC, Yuan SM, Ma DB. 1997. The regulations of production and technic for *Trionyx sinensis* original strain in Shaoxing [J]. *Fisheries Technological Information*, **24**(5): 215 221. [童加潮, 袁声明, 马东标. 1997. 绍兴中华鳖原种场原种生产技术操作规程. 水产科技情报, **24**(5): 215 221.]
- Welch HE. 1968. Relationships between assimilation efficiencies and growth efficiencies for aquatic creatures [J]. *Ecology*, **49**: 755 759
- Zhu XM, Xie SQ, Cui YB. 2000. Effect of ration level on growth and energy budget of the Gibel carp, Carassius auratus gibelio [J]. Occanologia et Limnologia Sinica, 31(5): 471-479. [朱晓鸣,解绶启,崔奕波. 2000. 摄食水平对异育银鲫生长及能量收支的影响. 海洋与湖沼,31(5): 471-479.]