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ABSTRACT

Pseudomonas plecoglossicida is a rod-shaped,
gram-negative bacterium with flagella. It causes
visceral white spot disease and high mortality in
Larimichthys crocea during culture, resulting in
serious economic loss. Analysis of transcriptome and
quantitative real-time polymerase chain reaction
(PCR) data showed that dksA gene expression was
significantly up-regulated after 48 h of infection with
Epinephelus coioides (log,FC=3.12, P<0.001). RNAI
of five shRNAs significantly reduced the expression
of dksA in P. plecoglossicida, and the optimal
silencing efficiency was 96.23%. Compared with
wild-type strains, the symptoms of visceral white spot
disease in L. crocea infected with RNAI strains were
reduced, with time of death delayed by 48 h and
mortality reduced by 25%. The dksA silencing led to
a substantial down-regulation in cellular component-,
flagellum-, and ribosome assembly-related genes in
P. plecoglossicida, and the significant up-regulation
of fliC may be a way in which virulence is maintained
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in P. plecoglossicida. The GO and KEGG results
showed that RNAI strain infection in L. crocea led to
the down-regulation of inflammatory factor genes in
immune-related pathways, which were associated
with multiple immune response processes. Results
also showed that dksA was a virulence gene in P.
plecoglossicida. Compared with the wild-type strains,

RNAI strain infection induced a weaker immune
response in L. crocea.

Keywords: Dual RNA-seq; dksA; Pathogen-host
interactions; Pseudomonas plecoglossicida;

Larimichthys crocea

INTRODUCTION

Infection is an exceedingly complex process involving strong
interactions between pathogen and host (Luo et al., 2020).
Both pathogen and host must mobilize all available resources
to win this life and death battle, and many changes during
infection are reflected in their respective transcripts (Zhang et
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al., 2018a). Therefore, simultaneous detection of
transcriptome profiles during infection can provide insight into
the pathogenic mechanisms and host immune responses
(Tang et al.,, 2019a). For a long time, due to technical
limitations, studies on infection have focused on either the
host or the pathogen (Sun et al., 2018). The advancement of
dual RNA-seq, which can simultaneously detect both
pathogen and host transcriptomes, has provided a powerful
and advantageous tool for studying various infection models
and pathogen-host interactions (Westermann et al., 2012,
2016, 2017; Valenzuela-Miranda & Gallardo-Escarate, 2018).
Dual RNA-seq combined with RNAi has also been used to
study the role of virulence genes in host-pathogen interactions
(Nuss et al., 2017; Wang et al., 2019a). In addition, dual RNA-
seq and dual iTRAQ have been applied to explore gene
functions at the multi-omics level (Luo et al., 2019a).

Large yellow croakers (Larimichthys crocea), an
economically important marine fish in China, are widely
cultured in the Fujian and Zhejiang provinces (Yang et al.,
2016). The most important factor threatening L. crocea culture
is the frequent occurrence of infection epidemics (Tang et al.,
2019c). Visceral white spot disease, one of the most
destructive diseases in L. crocea, is caused by Pseudomonas
plecoglossicida, a short rod-shaped gram-negative bacterium
(Huang et al., 2018; Zhang et al., 2014). Pseudomonas
plecoglossicida was first isolated from ayu fish (Plecoglossus
altivelis) suffering from bacterial hemorrhagic ascites
(Nishimori et al., 2000). In view of its potential to cause great
harm to aquaculture, the pathogenic mechanism of P.
plecoglossicida has attracted considerable attention (Huang et
al., 2019; Tao et al., 2016) and several virulence genes have
been identified (Tao et al., 2020; Zhang et al., 2017). Earlier
studies reported that P. plecoglossicida commonly circulates
in orange-spotted groupers (Epinephelus coioides) and can
easily adapt to and proliferate in the splenic environment,
resulting in significantly higher pathogen loads in spleens
(>200 times) than in other tissues (Luo et al., 2020). In
addition, P. plecoglossicida infection can cause irreversible
disruption of gut microbiota, resulting in increasing mortality (Li
et al., 2020). Furthermore, CspA1 is known to contribute to P.
plecoglossicida virulence in a temperature-specific manner via
regulation of sigX expression (Huang et al., 2020).

In previous studies from our laboratory, we found that the
dksA gene from P. plecoglossicida was highly expressed
during host infection (data deposited in GenBank SRA
database under accession numbers SRP114910 and
SRP115064). The dksA gene encodes an RNA polymerase-
binding transcription factor (Kamarthapu et al., 2016). The
gene has a variety of important functions, such as regulating
rRNA promoter activity (Paul et al., 2004), HFQ gene
expression and virulence of Shigella flexneri (Sharma &
Payne, 2006), growth rate of Escherichia coli (Mallik et al.,
2006), and assembly of flagella (Dalebroux et al., 2010). Thus,
based on our previous laboratory research and reported
literature, dksA may play a role in the pathogenicity of P.
plecoglossicida. To date, however, there are no reports on the

function of dksA in pathogen-host interactions.

To explore the roles of dksA in host-pathogen interactions
between P. plecoglossicida and L. crocea, a dksA-silenced
strain of P. plecoglossicida was constructed by RNAI
technology and differences in virulence between wild-type and
RNAI strains were analysed. The spleens of L. crocea infected
by the wild-type or dksA-RNAi strains of P. plecoglossicida
were subjected to dual RNA-seq. The present study provides
novel insight into host-pathogen interactions between P.
plecoglossicida and L. crocea.

MATERIALS AND METHODS

Bacterial strains and culture conditions

The highly pathogenic wild-type strain of P. plecoglossicida
(NZBD9) was isolated from the spleen of a diseased large
yellow croaker (Huang et al, 2018). Pseudomonas
plecoglossicida was shake-cultured (220 r/min) in Luria
Bertani (LB) broth at 18 or 28 °C. In addition, Escherichia coli
DH5a was obtained from the Beijing Tiangen Company
(China) and cultured in LB broth at 37 °C and 220 r/min.

Construction of P. plecoglossicida RNAi strain

The RNAI strains were constructed according to Sun et al.
(2018). Five short hairpin RNA sequences targeting the dksA
gene were designed using the RNAi website
(http://rnaidesigner.thermofisher.com/rnaiexpress/setOption.d
0?designOption=shrna&pid=708 587 103220684 543), and
then synthesized by Shanghai Generay Biotech Co., Ltd.
(China) (Supplementary Table S1). Each oligonucleotide was
annealed and ligated to the pCM130/tac vector linearized with
the restriction enzymes Nsil and BsrGl (New England Biolabs,
USA) using T4 DNA ligase (New England Biolabs, USA) (Guo
et al., 2018). The preparation of E. coli DH5a competent cells
was performed by the CaCl, method (Mandel & Higa, 1970).
The recombinant pCM130/tac vector was transformed into
competent E. coli DH5a by heat shock, and then extracted for
electroporating into P. plecoglossicida competent cells (Tang
et al,, 2019b). Finally, the expression of dksA in five dksA-
RNAI strains of P. plecoglossicida was verified by quantitative
real-time polymerase chain reaction (QRT-PCR).

Artificial infection and sampling

All fish experiments were carried out strictly following the
“Guide for the Care and Use of Laboratory Animals”
established by the National Institutes of Health. All animal
protocols were approved by the Jimei University Animal Ethics
Committee (Acceptance No. JMULAC201159).

In total, 200 healthy L. crocea (average weight ~50 g) were
obtained from Ningde (Fujian, China) and acclimatized to
laboratory conditions for one week. To detect the
pathogenicity of P. plecoglossicida in L. crocea, 60 fish were
randomly divided into three groups. Each acclimatized fish
was intrapleurally injected with 10* colony forming units per
gram fish (cfu/g) of the wild-type or RNAi strain of P.
plecoglossicida, respectively. As the negative control, other L.
crocea individuals were intrapleurally injected with 0.1 mL of
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phosphate-buffered saline (PBS). The water temperature
throughout the experiment was maintained at 18+1 °C. The
status of injected fish was recorded twice a day. For spleen
sampling, six spleens from wild-type or RNAI strain-infected L.
crocea were randomly sampled at 48 h post infection (hpi) for
dual RNA-seq, with two spleens mixed as one sample. In
addition, six spleens from L. crocea infected by the wild-type
or RNAI strain were randomly sampled at 6, 12, 24, 48, 72,
and 96 hpi for pathogen load and dksA expression assays.

DNA and RNA isolation

DNA purification of spleen samples was performed according
to the instructions provided with the EasyPure Marine Animal
Genomic DNA Kit (TransGen Biotech, China). The extracted
genomic DNA was stored at —20 °C until use.

Total RNA was extracted using an Eastep® Super Total
RNA Extraction Kit (Shanghai Promega Biological Products,
Ltd., China). The quality of total RNA was checked by agarose
gel electrophoresis. cDNA was synthesized by TransScript All-
in-One First-Strand cDNA Synthesis SuperMix for qPCR
(One-Step gDNA Removal) (TransGen Biotech, China) (Liu et
al., 2017). The synthesized cDNA was used as a new sample
template for gRT-PCR and then stored at —20 °C until use.

qRT-PCR

gRT-PCR was performed using a QuantStudio 6 Flex Real-
Time PCR System (Life Technologies, USA). All primer
sequences were designed using Primer Premier 5.0
(Supplementary Table S2). Bacterial gene expression was
normalized using 16S rDNA, L. crocea gene expression was
normalized using B-actin, and the relative level of gene
expression was calculated using the 2-22°t method. To assess
the pathogen load of P. plecoglossicida in the infected
spleens, the gyrB gene copy number was used to assess the
number of P. plecoglossicida.

Dual RNA-seq and transcriptome data analysis

Library preparation and sequencing: Sequencing
experiments were carried out using an lllumina Truseq™ RNA
Sample Prep Kit (lllumina, USA). Total RNA was extracted
from tissue samples using TRIzol® reagent, with
concentration and purity measured using a Nanodrop 2000,
RNA integrity detected by agarose gel electrophoresis, and
RIN values determined by an Agilent 2100. A single database
requires a total RNA of 1 pg, concentration of 250 ng/uL, and
OD260/280 of between 1.8 and 2.2. Eukaryotic and
prokaryotic mRNAs were simultaneously obtained by
removing rRNA, and fragmentation was carried out by adding
a fragmentation buffer. After reverse-synthesizing the cDNA,
an end repair mix was added to make it blunt-ended, and then
poly(A) was added to the 3' end for ligation of the Y-shaped
linker. Sequencing was performed on an lllumina HiSeq4000
sequencing platform from Majorbio Biotech Co., Ltd. (China).
The RNA sequence data were deposited in the GenBank SRA
database under accession Nos. PRJNA607373 and
SRP176599. The basis of transcriptome data analysis is high-
quality sequencing. Analysis showed that the distribution of
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the A/T/G/C base content was uniform (Supplementary Figure
S2), the base mass distribution of the sequence data met the
requirements of subsequent analysis (Supplementary Table
S3), and the repeatability between the three repeated samples
was good (Supplementary Figure S1).

Processing and mapping of reads: Trimming and quality
control of raw lllumina reads were performed using Sickle
(https://github.com/najoshi/sickle) and SeqPrep (https://
github.com/jstjohn/SeqPrep) with default settings. For RNA-
seq, clean data were mapped to the genome of P.
plecoglossicida strain  NB2011 (NCBI RefSeq accession
number: NZ_ASJX00000000.1) using Bowtie2 (Langmead &
Salzberg, 2012). Clean data were mapped to the genome of L.
crocea (NCBI RefSeq accession number: GCF_000972845.2)
using Hisat2 (Kim et al., 2015).

Differentially expressed mRNAs (DEMs) and enrichment
analysis: Differential expression was determined using
edgeR, which performs differential expression calculations
based on mRNA read count data and a negative binomial
distribution model (Anders & Huber, 2010; Robinson et al.,
2010). The screening criteria for significant DEMs were:
FDR<0.05 and |log,FC|>=1. The DEMs were then subjected
to enrichment analysis by hypergeometric distribution testing
using Goatools (https://github.com/tanghaibao/goatools) and
KOBAS (http://kobas.cbi.pku.edu. cn/home.do) (Xie et al.,
2011).

Statistical analyses

All data are expressed as meanststandard deviation (SD)
from at least three sets of independent experiments. Data
analysis was performed using SPSS 18.0 (SPSS Inc., USA),
and one-way analysis of variance with Dunnett's test was
used. P-values of <0.05 were considered statistically
significant.

RESULTS

Construction of dksA-RNAi strain

Based on gqRT-PCR, the expression level of dksA in the P.
plecoglossicida-infected spleens at 48 hpi was six times
higher than that in the in vitro culture, consistent with the
transcriptome analysis results (Figure 1A). The expression
level of dksA was significantly down-regulated in the five
mutant strains. The mRNA levels in the shRNA-31, shRNA-49,
shRNA-81, shRNA-87, and shRNA-249 mutant strains were
only 32.19%, 30.80%, 61.18%, 3.77%, and 9.80% that of the
wild-type strain, respectively (Figure 1B). The shRNA-87
mutant strain (hereinafter referred to as the dksA-RNAi or
RNAI strain) exhibited the lowest dksA RNA level and was
thus selected for subsequent analysis. The growth rates of the
dksA-RNAI strain and wild-type strain of P. plecoglossicida
were determined, although no significant differences between
the two strains were observed (Figure 1C).

Effect of dksA on P. plecoglossicida pathogenicity
Compared with the wild-type strain, the dksA-RNAi strain of P.
plecoglossicida exhibited a significant decrease in virulence,
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as observed by the 25% increase in the survival rate of
infected L. crocea and 48 h delay in first death. No deaths
were recorded in the negative control group of L. crocea
injected with PBS (Figure 2A). Furthermore, there were
significant differences in spleen appearance between the two
groups of L. crocea infected by the dksA-RNAi or wild-type
strains of P. plecoglossicida. The spleens of L. crocea infected
by the wild-type strain showed a large number of typical white
nodules on the surface at 60 hpi, whereas the spleens of L.
crocea infected by the dksA-RNAI strain displayed only a
small number of white spots on the surface (Figure 2B).

Throughout the infection process, the pathogen load in the
spleens of L. crocea infected with the dksA-RNAi strain was
always lower than that in L. crocea infected with the wild-type
strain of P. plecoglossicida, and showed a tendency to
increase gradually with the increase in infection time
(Figure 2C). In vivo expression levels of dksA in the dksA-
RNAi and wild-type strains of P. plecoglossicida were high
throughout the infection process, and the expression levels in
the dksA-RNAi strain were always lower than that in the wild-
type strain (Figure 2D).

Analysis and verification of transcriptome data of P.
plecoglossicida

We used edgeR software to calculate gene expression levels.
The screening criteria for significant differentially expressed
genes (DEGs) were FDR<0.05 and |log,FC|>=1. From the
constructed volcano map, a total of 4 988 P. plecoglossicida
mRNAs were obtained from the transcriptome of the L. crocea
spleens infected with the dksA-RNAi strain. Compared with
the wild-type strain, we identified 145 differentially expressed
P. plecoglossicida mRNAs in the dksA-RNAi strain-infected
spleens, 24 of which were up-regulated and 121 of which were
down-regulated (Figure 3A). The heat map (Figure 3B) shows
pathogenic genes whose differential expression in the three
samples exhibited >2-fold change by transcriptome
sequencing. The most variable up-regulated gene was
L321_RS17380 (log,FC=5.07), and the gene with the largest
down-regulated fold-change was flgC (log,FC=-15.02)

(Figure 3B). Five up-regulated and down-regulated DEGs of
the pathogen were randomly selected for qRT-PCR detection.
The gRT-PCR results were consistent with the transcriptome
sequencing results (Figure 3C).

Enrichment analysis of DEGs of P. plecoglossicida

Gene Ontology (GO) enrichment analysis of P.
plecoglossicida was performed based on Goatools using
Fisher's exact test. Results showed that there were 292
enriched terms, including 64 significantly enriched terms
related to cellular component (12), biological process (45), and
molecular function (7). The top 10 terms were organelle part,
cell part, cellular nitrogen compound biosynthetic process,
bacterial-type flagellum-dependent cell motility, structural
molecule activity, cilium or flagellum-dependent cell moatility,
archaeal or bacterial-type flagellum-dependent cell motility,
cell motility, movement of cell or subcellular component, and
cellular process (Figure 4A). KOBAS was applied for KEGG
pathway enrichment analysis, with 69 terms found to be
enriched, including three significantly enriched terms (i.e.,
flagellar ~ assembly, photosynthesis, and ribosome)
(Figure 4B). In total, DEGS were enriched in 30 terms
(P<0.01), as displayed in detail in Figure 4C. Compared with
the wild-type strain, most DEGs were down-regulated, except
for L321-RS02785, L321-RS02790, L321-RS14705, L321-
RS17525, L321-RS12450, and L321-RS11375, which were
up-regulated and primarily enriched in single-organism cellular
process (G0O:0044763) and cellular process (GO:0009987)
(Figure 4C).

Analysis and verification of transcriptome data of infected
L. crocea

The software used for gene expression calculation and the
screening criteria for significant DEGs were the same as those
used for the pathogen. From the constructed volcanic map, 27
520 L. crocea mRNAs were obtained from the spleen
transcriptome of L. crocea infected with the dksA-RNAi strain.
Compared with the wild-type-infected L. crocea, we identified
970 differentially expressed P. plecoglossicida mRNAs in the
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dksA-RNAI strain-infected spleens, 366 of which were up-
regulated and 604 of which were down-regulated (Figure 5A).
The heat map (Figure 5B) shows the expression levels of the
top 50 up-regulated and down-regulated genes in the three
samples of each group. The greatest fold-change in the up-
regulated genes was for LOC104939330 (log,FC=8.51), and
greatest fold-change in the down-regulated genes was for
CPA2 (log,FC=-5.4). Five up-regulated and down-regulated
DEGs of the host were randomly selected for qRT-PCR
detection. The qRT-PCR results of these genes were
consistent with the transcriptome sequencing results
(Figure 5C).

Enrichment analysis of DEGs in L. crocea

GO enrichment analysis of DEGs in L. crocea identified 292
enriched terms, including 21 significantly enriched terms
related to cellular component (1), biological process (9), and
molecular function (11) (Figure 6A). The top 10 significantly
enriched terms for the DEGs are displayed in detail in
Figure 6B. Based on z-score, more down-regulated genes
were enriched in endopeptidase activity (GO: 0004175), with
peptidase activity acting on L-amino acid peptides (GO:
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0070011) showing the highest significance (Figure 6B). KEGG
analysis identified 265 enriched KEGG pathways, including
four significantly enriched immune-related pathways (i.e., Toll-
like receptor signaling pathway, tumor necrosis factor (TNF)
signaling pathway, hematopoietic cell lineage, and cytokine-
cytokine receptor interaction) (Figure 6C). According to the
heat map, compared with the wild-type strain-infected spleens,
48 DEGs (39 down-regulated, nine up-regulated) were
enriched in the cytokine-cytokine receptor interaction
(ko04060) pathway. We identified 14 DEGs (11 down-
regulated, three up-regulated) enriched in the hematopoietic
cell lineage (ko04640) pathway. In addition, 17 DEGs (16
down-regulated genes, one up-regulated) were enriched in the
Toll-like receptor signaling pathway (ko04620) (Figure 8D).
According to the mapped TNF signaling pathway, many
genes in the spleen infected with the silenced strain showed
significant changes in pathways compared to the spleen
infected with the wild-type strain, with 23 genes found to be
significantly down-regulated. Intracellular signaling (negative),
transcription factors, leukocyte recruitment, cell adhesion, and
other related gene expression levels changed, with major
changes in inflammatory cytokine genes IL1b (-5.22), IL6
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(—4.02) and synthesis of inflammatory mediator gene ptgs2
(—4.52) (Figure 7).

DISCUSSION

The ability of pathogens to infect hosts is mainly regulated by
virulence genes (Crofts et al., 2018; Yao et al., 2019). In
recent years, dozens of virulence genes of aquatic pathogens
have been identified (Rong et al., 2017; Zhang et al., 2018b),
including several virulence genes of P. plecoglossicida (Wang
et al., 2019b). Virulence genes can affect host immune
responses (Sun et al, 2018) and are involved in host-
pathogen interactions (Sun et al., 2019a; Tang et al., 2020).
To date, however, no studies have reported on the effects of
the dksA gene on host immune response.

RNA interference technology can specifically reduce the
expression of genes and has been widely used to explore
gene functions (Zhang et al.,, 2019a). RNA interference

technology results in different silencing efficiency of different
aquatic pathogens (Guanzon & Maningas, 2018; Saleh et al.,
2016), and different shRNAs have different silencing efficiency
for the same gene (Sun et al.,, 2019b). To achieve good
silencing, it is necessary to design several different shRNAs
for a gene. In the present study, five shRNAs were designed
to silence the dksA gene by RNAi. Among the five RNAI
strains, dksA-shRNA-87 had the highest silencing efficiency
(96.23%), which is more efficient than the silencing of most
genes of aquatic pathogens (Ye et al., 2018; Zuo et al., 2019).
The stability of gene silencing is crucial for the study of gene
function. In the present study, the expression of dksA in the
host was higher than that in vitro, indicating that the gene may
be related to the pathogenicity of P. plecoglossicida.
Moreover, the dksA gene in the dksA-RNAi strain of P.
plecoglossicida was persistently silenced during the infection
process and its relative expression was always lower than that
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of the wild-type strain. These results indicate that the RNAI
technique was reliable in this study, thereby laying the
foundation for subsequent research.

In this study, L. crocea was artificially infected with P.
plecoglossicida. After infection with the dksA-silenced strain,
death time was delayed by 48 h and the mortality rate was
reduced by 25% compared with L. crocea infected with wild-
type P. plecoglossicida. After 60 h of infection, the spleens of
L. crocea showed typical symptoms of visceral white spot
disease, with fewer symptoms observed in the RNAI strain.
RNAi of the dksA gene resulted in a decrease in the
pathogenicity of P. plecoglossicida to L. crocea, suggesting
that dksA may contribute to the virulence of P.
plecoglossicida. Several genes have been verified to be
associated with P. plecoglossicida virulence, the silencing of
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which results in a reduction in mortality of experimental fish
(Tang et al., 2019a). The silencing of some genes also results
in a dramatic decline in the virulence of pathogens, and
therefore shows potential in the development of attenuated
vaccines (Luo et al., 2020).

Transcriptome sequencing is a powerful tool for studying
gene function (Yang et al., 2018), and has been applied in
host-pathogen interaction studies (Zhang et al., 2019b). In this
study, the transcriptome of the silenced strain changed
significantly during the infection process, and a total of 4 988
P. plecoglossicida mRNAs were detected in the samples.
Compared with the wild-type strain, we identified 145
differentially expressed mRNAs in the dksA-RNAi strain-
infected spleens, 24 of which were up-regulated and 121 of
which were down-regulated. Significantly altered genes were
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analyzed for GO and KEGG enrichment. As a result, cellular
component-, flagellum-, and ribosome assembly-related genes
of P. plecoglossicida were down-regulated after dksA gene
silencing, and the up-regulated gene L3271-RS14705 (fliC)
(log,FC=3.24) was enriched in seven functional GO terms.
Research has shown that DksA and ppGpp in Escherichia coli
inhibit the expression of the flagellar cascade during the
stationary phase and following starvation, thus affecting
flagella and ribosome assembly (Lemke et al., 2009). The loss
of the fliC gene in Edwardsiella tarda can damage bacterial
growth, reduce motility, decrease biofilm formation, and
decrease secretion of virulence-related proteins involved in
the type Il secretion system (TTSS) (He et al., 2012). From
this perspective, the silencing of the dksA gene in P.
plecoglossicida inhibited the expression of a large number of
genes related to flagella and ribosome assembly, and the
significant up-regulation of the fliC gene may be a way to
maintain virulence in P. plecoglossicida.

Infected spleens were chosen for dual RNA-seq because

they are an important immune organ (Chen et al., 2019). Dual
RNA-seq can synchronously detect transcriptome changes in
both host and pathogen (Luo et al., 2019a). During infection of
L. crocea, the transcriptome changed significantly. Compared
with the wild-type infected group, the most significantly down-
regulated gene in the dksA-RNAI strain-infected group was
CPA2. CPA2 is a member of the carboxypeptidase gene
family. In bacteria, carboxypeptidases play a key role in the
immune response to viral infections (Gardell et al., 1988;
Godahewa et al., 2014). Based on enrichment analysis, most
significantly enriched GO terms were related to peptidase
activity, with the greatest impact on endopeptidase activity
(GO: 0004175) and peptidase activity acting on L-amino acid
peptides (GO: 0070011). Many peptidases are related to the
immune response. Endopeptidases and L-amino acid peptides
have immune-related functions in organisms, e.g., the role of
endopeptidases in the immune response against influenza in
mice (Tan et al., 2017) and L-amino acid antibacterial activity
in the mucus layer of flounder Platichthys stellatus (Kasai et
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A: GO enrichment analysis of pathogen DEGs. B: Top 10 GO term-gene annotation enrichment analysis results. C: KEGG pathway enrichment
analysis of host DEGs. D: DEGs of cytokine-cytokine receptor interaction (Ko04060), hematopoietic cell lineage (Ko04640). and Toll-like receptor

signaling pathway (Ko04620).

al.,, 2010). Some up-regulated genes in the pathogenic
bacteria found here have not been reported previously in
relation to pathogenicity, and further studies are needed to
determine whether they are new virulence genes.

KEGG enrichment analysis of the transcriptome data of L.
crocea identified four significantly changed immune-related
pathways, i.e., Toll-like receptor signaling pathway, TNF
signaling pathway, hematopoietic cell lineage, and cytokine-
cytokine receptor interaction. Hematopoietic cell lineage plays
an important role in the immune response (Delves, 2020).
Through hematopoietic cell lineage, hematopoietic stem cells
differentiate into different blood cells, including T cells, natural
killer (NK) cells, basophils, macrophages, and B cells, in
response to various stimuli (Lu & Chen, 2019; Marshall et al.,
2018). The cytokine-cytokine receptor interaction pathway is
mainly involved in neutrophil infiltration during host immune
response (Mantovani et al., 2019). Cytokines are soluble
proteins secreted by donor cells in response to stimuli and
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transported to target cells through the circulatory system
(Sharma et al., 2014). Studies have shown that Epinephelus
coioides infected with L327_RS719110 gene-silenced P.
plecoglossicida strains can significantly affect cytokine-
cytokine receptor interactions (Zhang et al., 2018a). Toll-like
receptors play an important role in a host’s ability to recognize
pathogens and generate an immune response, which they
regulate by promoting inflammatory cytokines (Palti, 2011;
Takeda & Akira, 2015). The Toll-like receptor signaling
pathway is also involved in the immune response of L. crocea
to the secY gene of P. plecoglossicida (Wang et al., 2019a).
TNF is a proinflammatory cytokine, which mediates
inflammatory responses and regulates immune functions, with
abnormal TNF signal transduction also related to inflammatory
diseases (Joosten et al.,, 2016). To ensure body health, an
organism will clear senescent and diseased cells by inducing
apoptosis through the tumor necrosis factor superfamily
(TNFSF) ligand (Collette et al., 2003). Studies have shown
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Figure 7 Schematic overview of response of TNF signaling pathway of L. crocea to P. plecoglossicida infection
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greater change in gene expression.

that interactions between tumor necrosis factor receptor type 1
(TNFR1) and nuclear factor kappa-B (NF-kB) are essential for
maintenance of the TNFR1 pathway activity and activation of
inflammatory cytokines that induce leukocyte recruitment
(Alcamo et al., 2001). In addition, the TNFR1 pathway can
also prepare antibodies for further pathogen clearance
(Stokes et al.,, 2015). In the current study, significantly
enriched inflammatory cytokines and cellular regulatory genes
were down-regulated in the TNF pathway, similar to results
reported in our previous study (Tang et al., 2019c). To
summarize, the down-regulation of pro-inflammatory genes
involved in the four significantly changed immune-related
pathways may be due to the virulence of the RNAI strain being
weaker than that of the wild-type strain. Thus, the immune
response of the large yellow croakers infected with the RNAI
strain was weaker than those infected with the wild-type strain.

CONCLUSIONS

In conclusion, dksA is a virulence gene of P. plecoglossicida.
The silencing of dksA resulted in the down-regulation of cell
component-, flagellum-, and ribosome assembly-related genes
of P. plecoglossicida, thereby reducing the virulence of P.
plecoglossicida. Through analysis of transcriptome data, we
found that the fliC gene of the RNAI strain was significantly up-
regulated in the course of infection, which may be a way in
which to maintain the virulence of P. plecoglossicida. In
addition, compared with those infected with the wild-type
strain, the immune response of L. crocea infected by the RNAI
strain was weaker. Most down-regulated GO terms in L.
crocea infected with the RNAI strain were related to peptidase
activity. KEGG enrichment analysis showed that genes related
to inflammatory factors in four immune-related pathways were
down-regulated in L. crocea infected with the RNAI strain.
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Therefore, L. crocea appears to be more resistant to infection
by RNAI strains.
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Supplementary Figure S1 Correlation analysis among transcriptome data
samples

A: Correlation analysis between L. crocea transcriptome data samples. B: Principal
component analysis (PCA) of P. plecoglossicida transcriptome data samples.
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Supplementary Figure S2 Base percentage composition in reads

Horizontal axis shows base coordinates of reads, which represent bases from 5' to 3'
ends sequentially. Vertical axis shows corresponding percentage, with each base
shown in a different color. A, purple; C, green; G, blue; T, orange; N, yellow. In
existing high-throughput sequencing technology, the 6 bp random primers used in
reverse transcription of ¢cDNA can cause a certain preference of nucleotide
composition in the first several positions, which is normal. (A), (B), (C) are
dksA-RNAI strain-infected group; (D), (E), (F) are wild-type strain-infected group.



Supplementary Table S1 Five shRNA sequences for dksA gene

Name

Base sequence(5'-3")

dksA-shRNA-
31

dksA-shRNA-
49

dksA-shRNA-
81

dksA-shRNA-
87

dksA-shRNA-
249

F5’-TGCCGATGACTACATGAACGCTTTCAAGAGAAGCGTT
CATGTAGTCATCGGCTTTTTTT -3°
R5’-GTACAAAAAAAGCCGATGACTACATGAACGCTTCTC
TTGAAAGCGTTCATGTAGTCATCGGCATGCA -3’

F5’-TGCTGATCAGCTGGCATTCTTCTTCAAGAGAGAAGAA
TGCCAGCTGATCAGCTTTTTTT -3’
R5’-GTACAAAAAAAGCTGATCAGCTGGCATTCTTCTCTCT
TGAAGAAGAATGCCAGCTGATCAGCATGCA -3’

F5’-TGCAGGCGATGAAAGTCGAAACTTCAAGAGAGTTTC
GACTTTCATCGCCTGCTTTTTTT -3’
R5’-GTACAAAAAAAGCAGGCGATGAAAGTCGAAACTCTC
TTGAAGTTTCGACTTTCATCGCCTGCATGCA -3°

F5’-TGATGAAAGTCGAAACCCATGATTCAAGAGATCATGG
GTTTCGACTTTCATCTTTTTTT -3’
R5’-GTACAAAAAAAGATGAAAGTCGAAACCCATGATCTC
TTGAATCATGGGTTTCGACTTTCATCATGCA -3°
F5’-TGGCGCTTGATCGTATCAATGATTCAAGAGATCATTGA
TACGATCAAGCGCCTTTTTTT -3°
R5’-GTACAAAAAAAGGCGCTTGATCGTATCAATGATCTCT
TGAATCATTGATACGATCAAGCGCCATGCA -3




Supplementary Table S2 Primers sequences for PCR and qRT-PCR

Gene name Base sequence (5'-3")
. F:5>TGCTGAAGGACGAGCGTTCG 3’
-

& R:5’ATCATCTTGCCGACAACAGC ¥’
F:5’GCATTCTTCACTGCCCTGCTG 3’

dksA R: 5’ CCGATTGGCTCACCACTGTCAT 3’

168 F: 5 TCAGTATCAGTCCAGGTGGTCGC3'
R: 5' CGTTACCGACAGAATAAGCACCG 3'
F:5°CTTCCTGGTTGGCTTGGTTTC 3°

pcM130
R:5’GGTGTTCCTTCTTCACTGTCCCT 3°
F:5' GACCTGACAGACTACCTCATG3'

P actin

L321_RS01030

L321 RS16535

L321 RS12770

L321 RS13275

L321 RS00705

impB

fiic

prkA

SigL

LOC104927340

LOC104926167

R: 5' AGTTGAAGGTGGTCTCGTGGA3'

F: 5" ATCCCTCGAAAGCCTCA 3'

R:5' CCGCCATCAGAATACCA 3'

F:5' GAAGTTGATCGACCTGCTGAC 3'
R: 5' GCCATACACGACTACGGAAAT 3'
F: 5' AACTGGGATGTTCCGACTG 3'

R: 5' CAACCACTGACCTGGCTTC 3'

F: 5' CGCCCTATTGGTAGACAC 3'

R: 5' GCAACAGACGCCTCCT 3'

F:5' CACGGGACAGTTTGGTTT 3'
R:5' GACGGCGACTGGGTTAC 3'

F: 5" AAGGCTTGACGCTGGAAAT 3'
R: 5' CACTTGGGCAACAACTGAAT 3'
F: 5' CCTTGGCATTGGCTTCATAG 3'
R: 5' TTCCAGGGCGTAGTCGGTAT 3'
F: 5' CCTGTTCAATGCCACCG 3'

R: 5' GGCGTCTGCGTCGTTTT 3'

F: 5' CAGCGGATGGATAAACCC 3

R: 5' CGACAGCTCACTGGCAAA 3'

F: 5" GTATGTTTCAACGAGGTCC 3'
R: 5" ATTGGCAGTTTCTTCAGG 3'
F: 5" GGCACGACAGAGCATACA 3
R: 5" TGACCAGCACGACTACCA 3




Supplementary Table S2 Primers sequence for PCR and qRT-PCR(continued)

Gene name Base sequence (5'-3")
Ih10 F: 5" CACGGGAATGTTCAAAGG 3'

r

R: 5" GATCATGGGCTGGTCAGT 3'

F: 5" TCTGAGTGACAGCCTTGA 3'
LOC104932154

R:5" CCTTCCTTCTGCACGATT 3'

F: 5' GGAATGGGAGAATGGAAC 3'
LOC104932156

R: 5' ACAAGACAGAACAGGAGC 3

F: 5 TGACTCCACCACTGCTTT 3'
LOC104939330

R: 5' ACCAGTTCTTGCTGCTAA 3'
L1 F: 5" AACTCCGCTTCCTGTCTT 3

R: 5' TCGTCAGCTCCTCCACCT 3

F: 5" GGAGAATGGAAATGGGTG 3
LOC104922235

R: 5" GGAGCAGGGAACATCGTA 3

F: 5" AACCCGACCCACAACCTC 3'
LOC109137616

R: 5" ACGCCAGTGTCTCGTACTTATC 3'

F: 5 TTCACTCCTGCCACCACA 3'
LOC104922653

R: 5" CCAATAATAAGGCTACCAAACA 3'

Supplementary Table S3 Data after trimming and quality control of raw Illumina

reads

Sample ID  Total Reads Total Bases Error% Q20% Q30% GC%
WT 2d 1 200048168 26657517354 0.0245 98.31 94.56 49.36
WT 2d 2 190546784 25746982390 0.0247 98.25 94.39 49.06
WT 2d 3 203641328 27006815909 0.0244 98.36 94.69 49.84
dksA 2d 1 216870178 28948484129 0.025 98.09 94 49.45
dksA 2d 2 189528966 25205299230 0.0242 98.41 94.81 49
dksA 2d 3 203743130 26982226167 0.0242 98.42 94.83 49.43
mock ¢j 1 21107326 2948749200  0.0242 98.41 94.87 58.13
mock ¢j 2 21157930 2965562035  0.0244 98.34 94.65 58.68
mock ¢j 3 20896468 2917744458  0.024 98.51 95.11 58.64
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