ZOOLOGICAL RESEARCH

Co-selection may explain the unexpectedly high
prevalence of plasmid-mediated colistin resistance
gene mcr-1in a Chinese broiler farm

DEAR EDITOR,

The rise of the plasmid-encoded colistin resistance gene mcr-
1 is a major concern globally. Here, during a routine
surveillance, an unexpectedly high prevalence of Escherichia
coli with reduced susceptibility to colistin (69.9%) was
observed in a Chinese broiler farm. Fifty-three (63.9%) E. coli
isolates were positive for mcr-1. All identified mcr-1-positive E.
coli (MCREC) were multidrug resistant and carried other
clinically significant resistance genes. Furthermore, the mcr-1
genes were mainly located on the Incl2 and IncHI2 plasmids.
Conjugation experiments unraveled the co-transfer of mcr-1
with other antibiotic resistance genes (blactx.m-s5 blacTx-m-14»
florR, and fosA3) via the Incl2 (n=3) and IncHI2 (n=4)
plasmids. The stable genetic context mcr-1-pap2 was
common in the Incl2 plasmids, whereas ISAp/1-mcr-1-pap2-
ISApl/1 was mainly found in the IncHI2 plasmids. The
dominance of mcr-1-bearing Incl2 and IncHI2 plasmids and
co-selection of mcr-1 with other antimicrobial resistance genes
might contribute to the exceptionally high prevalence of mcr-1
in this broiler farm. Our results emphasized the importance of
appropriate antibiotic use in animal production.

Multidrug resistant (MDR) bacteria have become a major
public health concern. Colistin, the silver bullet against
infections caused by MDR bacteria, was reintroduced into
human clinics and hailed as an antibiotic of last resort (Nation
& Li, 2009). In animal production, colistin was heavily used as
a growth promoter (Casal et al., 2007), which inevitably led to
colistin resistance. Since the first detection of the mobile
colistin resistance gene mcr-1 in 2015, the prevalence of
colistin resistance has become worrisome (Liu et al., 2016).
The mcr-1 gene encodes phosphoethanolamine transferase
MCR-1 for the modification of lipid A, which reduces the
negative charge of bacterial outer membranes and causes

colistin resistance (Li et al., 2019). Primarily, mcr-1 is found in
E. coli, as well as several other Enterobacteriaceae species
and Vibrio parahaemolyticus (Lei et al., 2019; Nang et al.,
2019). Various studies have reported on the existence of mcr-
1 in humans, animals, plants, and the environment (Liu & Liu,
2018; Nang et al., 2019; Wang et al., 2017a). In addition, an
increasing number of mcr variants (e.g., mcr-2 to mcr-10)
have been identified in Enterobacteriaceae (Ling et al., 2020;
Wang et al., 2020). The wide distribution of mcr-1 is usually
mediated by mobile genetic elements, with the Incl2, IncX4,
and IncHI2 plasmids considered as the main culprits (Liu &
Liu, 2018; Sun et al., 2018). Generally, the occurrence of
colistin resistance and mcr-1 among Enterobacteriaceae
isolates from humans (0.1%-8.8%) is lower than that from
livestock (0.9%-76.9%) (Liu & Liu, 2018; Liu et al., 2016;
Quan et al., 2017; Wang et al., 2017b). For avian species, the
detection rate of Enterobacteriaceae carrying mcr-1 is
generally below 30% (Lentz et al., 2016; Moawad et al., 2018;
Perrin-Guyomard et al., 2016; Shen et al., 2016; Trung et al.,
2017). In China, the prevalence of mcr-1 and colistin
resistance in E. coli from avians (~10%) is generally lower
than that from swine (~30%) (Huang et al., 2017; Yang et al.,
2017; Zhang et al.,, 2018). However, during routine
surveillance of antimicrobial resistance in E. coli from food
animals, an unexpectedly high prevalence (69.9%) of reduced
susceptibility to colistin was found in E. coli from a Chinese
broiler farm in 2013. Therefore, in the current study, we
investigated the potential mechanism behind this
phenomenon.

In July 2013, a total of 100 fresh fecal samples (~2 g per
sample) were randomly collected from 100 broilers (27 days
old) on a farm in eastern China. Bacterial recovery was
conducted by incubating the samples in 3 mL of Luria Broth
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for 16-24 h. Then, 2 pL of bacterial solution was inoculated
into MacConkey agar plates, from which non-duplicate
colonies with E. coli morphology were selected and identified
using MALDI-TOF MS (Shimadzu-Biotech Corp., Japan).
Minimum inhibitory concentrations (MICs) of 14 antibiotics
against E. coli isolates were evaluated using agar dilution. The
results were interpreted according to the interpretative criteria
recommended by CLSI (M100-S30) (ampicillin, cefotaxime,
gentamicin, amikacin, fosfomycin, and ciprofloxacin) (Clinical
and Laboratory Standards Institute, 2020) and epidemiological
cut-off (ECOFF) values recommended by EUCAST (colistin,
florfenicol, and neomycin) (http://www.eucast.org).
Identification of MDR E. coli was confirmed after the bacteria
showed resistance to at least three agents from different
antimicrobial categories (Magiorakos et al., 2012). Polymerase
chain reaction (PCR) amplification and Sanger sequencing
were used to screen resistance genes, including mcr-1,
blactxm (B-lactamase genes), fosA3 (fosfomycin resistance
gene), and rmtB (aminoglycoside resistance gene), as well as

plasmids (IncHI2, Incl2, Incl1, IncX4, and IncFll) in the E. coli
strains with the primers listed in Table S1.

In total, 83 E. coli strains were recovered from the broiler
farm. Overall, 58 (69.9%) strains showed reduced
susceptibility (MIC = 2 mg/L) to colistin, among which 53
(63.9%) were positive for mcr-1 (MCREC) (Table 1). The
reason why the other five mcr-1-negative strains showed
reduced susceptibility to colistin remains to be studied. Also,
55 (66.3%) strains showed resistance (MIC = 4 mg/L) to
colistin. The high prevalence of colistin resistance and
circulation of mcr-1 among the E. coli collected from this
broiler farm was unexpected, as the occurrence of MCREC in
avian farms is usually low, e.g., 10% in China (Yang et al.,
2017), 8% in Egypt (Moawad et al., 2018), 2% in South Africa
(Perreten et al., 2016), and 2% in France (Perrin-Guyomard et
al., 2016). The exceptionally high detection rate of MCREC
(63.9%) in the current study is worrying as distribution of mcr-
1 along the broiler industry chain is possible (Wang et al.,
2017c).

Table 1 Antibiotic resistance profiles, resistance genes, and genetic backgrounds and locations of mcr-1in 53 E. coliisolates

Isolate® Resistance profile® Other resistance gene® Location of mcr-1, size? Genetic context of mcr-1
XCLC11 AMP, CTX, STR, TET, FFC, CL, FOS blactx.m-14,blactx-m-64, FOSA3 IncHI2 ISApl1-mcr-1-pap2
XCLC12 AMP, CTX, STR, TET, FFC, CL, FOS, CIP blacty.m-14, fOSA3 IncHI2 ISApl1-mcr-1-pap2-ISApl1
XCLC16 AMP, CTX, STR, TET, FFC, CL, FOS, CIP blactx-m-s5 IncHI2 ISApl1-mcr-1-pap2
XCLC26 AMP, CTX, TET, FFC, CL, FOS, CIP blacty.m.14, fOSA3 IncHI2 ISApl1-mcr-1-pap2
XCLC37 AMP, CTX, GEN, STR, TET, FFC, CL, FOS, CIP blactx.m.14, f0SA3 IncHI2 ISApl1-mcr-1-pap2
XCLC31 AMP, STR, TET, FFC, CL, CIP - IncHI2 ISApl1-mcr-1-pap2
XCLC33 AMP, CTX, GEN, TET, FFC, CL, FOS, CIP blacTx-m-14 IncHI2 ISApl1-mcr-1-pap2
XCLC4 AMP, CTX, STR, TET, FFC, CL, FOS, CIP blacty.m.14, fOSA3 IncHI2 ISApl1-mcr-1-pap2-ISApl1
AMP, CAZ, CTX, GEN, STR, TET, EEC, CL, blactx.m-14, blacTxm-es, fOSA3, -
XCLC46 _FOS, CIP I — floR IncHI2, ~244 kb ISApl1-mcr-1-pap2
XCLC52 AMP, CTX, STR, TET, FFC, CL, FOS, CIP blactx.m.-s5 f0SA3 IncHI2 ISApl1-mcr-1-pap2-ISApl1
AMP, CAZ, CTX, GEN, STR, TET, EEC, CL, blactxm-14, blacTx-m-es, _
XCLC54 _FOS, s — — f0sA3 fIoR IncHI2, ~244 kb ISApl1-mcr-1-pap2
XCLC58 /':'\OASP gl-:;x AL EIFN, S, VST, (S, © blacty.m.s5 f0SA3, rmtB IncHI2 ISApl1-mcr-1-pap2-1SApl1
AMP’, CAZ, CTX, GEN, STR, TET, EFC, CL, blacrxm-14, blacrx-wm-s2n, -
XCLC69 FOS, CIP fosA3floR IncHI2, ~244 kb ISApl1-mcr-1-pap2
XCLC74 AMP, CTX, STR, FFC, CL, FOS, CIP fosA3 IncHI2 ISApl1-mcr-1-pap2-ISApl1
XCLC75 AMP, CTX, STR, TET, FFC, CL, FOS, CIP blactx.m-14) fOSA3 IncHI2 ISApl1-mcr-1-pap2-ISApl1
XCLC78 AMP, CTX, STR, TET, FFC, CL, FOS, CIP blactx.m-15, fOSA3 IncHI2 ISApl1-mcr-1-pap2
XCLC82 AMP, CTX, GEN, STR, TET, FFC, CL, FOS, CIP fosA3 IncHI2, ~210 kb ISApl1-mcr-1-pap2
AMP, CAZ, CTX, GEN, STR, TET, EEC, CL,
XCLC89 — mw, fosA3.floR IncHI2, ~244 kb ISApl1-mcr-1-pap2
AMP, CTX, AMK, GEN, STR, TET, FFC, CL,  blacryata blacrsanss, f0SA3, ISApI1-mer-1-pap2(IncHI2),
XCLC28 FOS, CIP rmtB IncHI2, Incl2 mcr-1-pap2(Incl2)
XCLC27 AMP, CTX, STR, TET, FFC, CL, FOS, CIP fosA3 IncHI2, Incl2 ISApI1-mer-1-pap2(IncH2),
mcr-1-pap2(Incl2)
XCLC40 AMP, CTX, GEM, STR, TET, FFC, CL, FOS, CIP blacrx.y.ss, f0SA3 IncHI2, Incl2 1SApl-mer-1-pap2(incH2),
mcr-1-pap2(Incl2)
XCLC41 AMP, CTX, GEN, STR, TET, FFC, CL, FOS, CIP blagrx14, fosA3 IncHI2, Incl2 1SAplt-mer-1-pap2(incH2),
mcr-1-pap2(Incl2)
XCLC44 AMP, CTX, GEN, STR, TET, FFC, CL, FOS, CIP blacrx.14 f0SA3 IncHI2, Incl2 ISApI1-mor-1-pap2(IncH2),
mcr-1-pap2(Incl2)
ISApl1-mcr-1-pap2-
XCLC55 AMP, CAZ, CTX, STR, TET, FFC, CL, FOS, CIP blactxm-s5 blactx.m-s5 fOSA3 IncHI2, Incl2 ISApl1(IncHI2),mcr-1-

pap2(Incl2)
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Continued

Isolate® Resistance profile® Other resistance gene® Location of mer-1, size® Genetic context of mer-1
AMP, CTX, GEN, NEO, STR, TET, FFC, CL, ISApl1-mcr-1-pap2(IncHI2),
bl , fosA3
XCLC6 FOS. CIP acTx-m-55 fOS IncHI2, Incl2 mer-1-pap2(Inci2)
AMP, CAZ, CTX, GEN, STR, TET, FFC, CL, ISApl1-mcr-1-pap2(IncHI2),
bl fosA3
XCLC73 FOS, CIP acTx-m-55, fOS IncHI2, Incl2 mer-1-pap2(Incl2)
AMP, CAZ, CTX, FOX, GEN, STR, TET, FFC, ISApl1-mcr-1-pap2(IncHI2),
XCLC8 CL, FOS, CIP fosA3 IncHI2, Incl2 mor-1-pap2(Inci2)
AMP, CAZ, CTX, FOX, AMK, GEN, STR, TET,
XCLC35° blacty-m-14, blacTx.m.55, f0SA3, Incl2, ~65 kb mcr-1-pap2
FFC, CL, FOS, CIP rmtB
XCLC5 ﬁg/ISP g:;x AMK, GEN, STR, TET, FFC, CL, rmtB Incl2, ~63 kb mcr-1-pap2
AMP’, CAZ, CTX, AMK, GEN, STR, TET, FFC,
XCLC76 blacrx.m.s5 f0SA3, rmtB Incl2, ~65 kb mer-1-pap2
CL, FOS, CIP —
XCLC13 AMP, GEN, STR, TET, FFC, CL, FOS, CIP fosA3 Incl2, ~63 kb ISApl1-mcr-1-pap2
XCLC15 AMP, CAZ, CTX, GEN, STR, TET, FFC, CL, blagrya.ss, fSA3 Incl2 i
FOS, CIP
XCLC21 AMP, CTX, GEN, STR, TET, FFC, CL, FOS, CIP blactx.m-55 Incl2, ~63 kb mcr-1-pap2
XCLC2 AMP, CTX, STR, TET, FFC, CL, FOS, CIP blactx.m-14, fOSA3 Incl2, ~63kb mcr-1-pap2
XCLC20 AMP, CAZ, CTX, GEN, STR, TET, FFC, CL, blacrxw-64 Incl2, ~65 kb mer-1-pap2
—  FOS,CIP — -
XCLC24 AMP, CTX, GEN, STR, TET, FFC, CL, FOS, CIP blacTx.m.¢5, f0SA3 Incl2 mcr-1-pap2
XCLC34 AMP, STR, TET, FFC, CL, FOS, CIP fosA3 Incl2, ~63 kb ISApl1-mcr-1-pap2
XCLC39 ?'\OASP ’ gﬁ:,z oS0 WIS SR, UlEU, (ARG, Sk blactx.m-s5, fOSA3 Incl2. ~63 kb mcr-1-pap2
XCLC42 AMP, CTX, STR, TET, FFC, CL, FOS, CIP blactx.m.e5, fosSA3 Incl2, ~63 kb mcr-1-pap2
XCLC45 AMP, CTX, TET, FFC, CL, FOS, CIP blactx.m.e5, fosA3 Incl2 mcr-1-pap2
AMP, CAZ, CTX, FOX, GEN, STR, TET, FFC,
XCLC48 CL, FOS, CIP blactx.m-24, blacTxm-ss f0SA3  Incl2 ISApl1-mcr-1-pap2
XCLC50 AMP, CTX, STR, TET, FFC, CL, FOS, CIP blacTx-m.24, fOSA3 Incl2, ~63 kb mcr-1-pap2
XCLC53 AMP, STR, TET, FFC, CL, FOS, CIP fosA3 Incl2 ISApl1-mcr-1-pap2
XCLC56 AMP, CTX, STR, TET, FFC, CL, CIP blacTx-m-15 Incl2 mcr-1-pap2
XCLC60 AMP, CTX, STR, TET, FFC, CL, FOS, CIP blacTx.m.¢5, fOSA3 Incl2 mcr-1-pap2
XCLCB4 ?l\O/ISP gl':;x GEN, NEO, STR, TET, FFC, CL, blagrya.ss, fSA3 Incl2 e
XCLC65 ?:\JASP ((:';QZ CTX, GEM, STR, TET, FFC, CL, blactx-m-14, fOSA3 Incl2 mcr-1-pap2
XCLC71 B, G )26 CIERE BUI, DEL, e, B blactx.m-s5, f0OSA3 Incl2 mcr-1-pap2
FOS, CIP
XCLC80 AMP, CTX, STR, TET, FFC, CL, CIP blactx-m-65 Incl2, ~63 kb mcr-1-pap2
XCLC81 AMP, CTX, STR, TET, FFC, CL, FOS, CIP blactx-m-14 Incl2 mcr-1-pap2
XCLC83 AMP, CTX, GEN, STR, TET, FFC, CL, FOS, CIP Incl2 mcr-1-pap2
XCLC92 AMP, CTX, STR, TET, FFC, CL, FOS, CIP Incl2 mcr-1-pap2
XCLC85 AMP, CTX, GEN, STR, TET, FFC, CL, FOS, CIP blacrx.m-14 IncX4 mcr-1-pap2

a: |solates from which mcr-1 gene was transferred to recipient by conjugation or transformation are underlined. ®: AMP: Ampicillin; CAZ: Ceftazidime;
CTX: Cefotaxime; FOX: Cefoxitin; AMK: Amikacin; GEN: Gentamicin; NEO: Neomycin; STR: Streptomycin; TET: Tetracycline; FFC: Florfenicol; CL:
Colistin; FOS: Fosfomycin; CIP: Ciprofloxacin. Resistance phenotypes transferred to recipient by conjugation are underlined. °: Genes co-
transferred with mcr-1 by conjugation or transformation as determined by PCR are underlined. —: Not available % Replicon type of plasmid carrying
mcr-1 in transconjugant/transformant and approximate size of plasmid are underlined. ®: Transformant was obtained from this isolate.

All 53 MCREC showed the MDR phenotype as well as very
high resistance rates to tetracycline (100%), ampicillin (100%),
florfenicol (98.1%), cefotaxime (92.5%), and fosfomycin
(94.3%) (Supplementary Figure S1A). Of note, PCR revealed
that the MCREC carried various resistance genes with clinical
significance, including fosA3 (n=41, 80.7%), blactx.m (n=41,
80.7%), and rmtB (n=5, 4.2%) (Figure S1b and Table 1). The

blaCTx_M variants included blaCTx_M_14 (n=19), bIaCTx_M_55

(n=16), blactxmes (n=8), and blacrxmes (n=2). High
frequencies of the IncHI2 (47%) and Incl2 (48%) plasmids
were also observed (Supplementary Figure S1B). The high
occurrence of resistance and resistance genes to third
generation cephalosporines, which are used in frontline
therapy, and to fosfomycin, which is effective against infection
by MDR Enterobacteriaceae (Falagas et al., 2010), among
these MCREC is alarming. Though the usage of colistin in this
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broiler farm is not clear, the high prevalence of antimicrobial
resistance among E. coli might result from the heavy usage of
multiple antibiotics in broilers as ceftiofur, enrofloxacin, and
florfenicol are routinely used in this farm (data not shown).

To elucidate the mechanism mediating the spread of mcr-1
in the studied farm, we first investigated vertical transfer of
mcr-1 by evaluating the clonal relationships among MCREC
with pulsed-field gel electrophoresis (PFGE) on a CHEF-
MAPPER System (Bio-Rad, USA), as described previously
(Gautom, 1997). Specifically, total DNA was digested by the
Xbal enzyme (TaKaRa Bio Inc., Japan) and embedded in low-
melting-point agarose (Bio-Rad, USA). The electrophoretic
conditions were: initial switch time, 2.16 s; final switch time,
63.8 s; run time, 19 h; angle, 120°; gradient, 6.0 V/cm;
temperature, 14 °C; ramping factor, linear. BioNumerics
(Applied Maths, Belgium) was used to analyze the results,
with the unweighted pair group method, arithmetic mean, and
dice similarity index. The results were interpreted according to
previous criteria (Tenover et al, 1995). PFGE was
successfully performed on 45 MCREC isolates with the Xbal
enzyme, with the remaining eight isolates not typable. Twenty-
eight different Xbal PFGE patterns were identified (Figure 1),
indicating that most MCREC were clonally unrelated.

The horizontal mobility of mcr-1 was also investigated via
conjugation using streptomycin-resistant E. coli C600 as the
recipient (Wu et al., 2018). Twenty-seven isolates were
randomly included in the conjugation. Using E. coli DH5a as
the recipient, chemical transformation was performed on
strains that failed in the conjugation assay. For the selection of
transconjugants/transformants, colistin, cefotaxime,
trimethoprim/sulfamethoxazole, and florfenicol were used.
Subsequently, the transconjugants and transformants were
subjected to PCR to confirm the existence of mcr-1 and co-
transfer of other resistance genes (blactx.m-16, Plactx-m-9c:
fosA3, and rmtB) with mcr-1. S1-nuclease PFGE was
performedtoconfirmthesingleplasmidswithinthetransconjugants/
transformants, and to evaluate their sizes (Barton et al., 1995).
The antibiotic resistance profiles of transconjugants and
transformants were also determined. Plasmid replicon typing
was performed with PCR and Sanger sequencing using the
primers listed in Supplementary Table S1. In addition, the
locations and genetic contexts of mcr-1 in all MCREC isolates
were analyzed by PCR mapping with primers targeting the
region of the plasmid backbone and mcr-1 (Supplementary
Table S2).

Seventeen mcr-1-positive plasmids were successfully
transferred from their hosts via conjugation (n=16) or
transformation (n=1) (Table 1). S1-PFGE showed that only
one plasmid carrying mcr-1 was transferred to the recipients
and mcr-1 was located on the Incl2 plasmids with sizes
varying from ~63 to ~65 kb (n=12) or IncHI2 plasmids with
sizes ranging from ~210 to 244 kb (n=5) (Table 1). Of note,
PCR revealed the co-transfer of mcr-1 with blacty.v.ea/blacTx-
M55 Vvia Incl2 plasmids (n=3, 25%), and with blacryxm-
14/floRIfosA3 via IncHI2 plasmids (n=4, 80%) (Table 1). The
co-transferred resistance genes were able to confer relevant
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antibiotic resistance to the recipients (E. coli C600 and DH5a).
Feng et al. (2019) also reported the co-transfer of blactx.m-64
with mer-1 via Incl2 plasmids in E. coli from an imported wild
fox in China. In addition, fosA3 and floR are frequently co-
transferred with mcr-1 via IncHI2 plasmids (Li et al., 2017; Zhi
et al., 2016). These results are of concern because B-lactams
(ceftiofur) and florfenicol routinely consumed in animals may
select MCR-1-producing plasmids co-harboring blactym
and/or floR via co-selection, and further aggravate the
distribution and persistence of mcr-1 in this broiler farm. Thus,
we should not underestimate the risk that mcr-1 may spread
via a similar mechanism.

The PCR mapping results revealed that nine isolates
simultaneously carried mecr-1-positive Incl2 and IncHI2
plasmids (Table 1). All 62 (53+9) mcr-1 genes were located in
the Incl2, IncHI2, and IncX4 plasmids, with Incl2 dominating
the host profile (Table 1), in agreement with other findings
(Elbediwi et al., 2019; Migura-Garcia et al., 2020; Sun et al.,
2018; Wu et al., 2018). Incl2 plasmids have also been
reported as the vectors of blactx. genes, e.g., blactx.ss and
blactxm-s4 (Liu et al., 2015; Lv et al., 2013). The dominance of
Incl2 (55%) may result from the low fitness cost of mcr-1-
positive Incl2 plasmids compared with IncHI2 and IncX4
plasmids (Wu et al., 2018). Of the 62 mcr-1 genes, three
different genetic structures were detected, including mcr-1
without ISApl1 (mcr-1-pap2) (n=31), mcr-1 with 1SAp/1
upstream (ISApl1-mcr-1-pap2) (n=24), and mcr-1 embedded
in the complete transposon Tn6330 (ISApl/1-mcr-1-pap2-
ISApl1) (n=7). In addition, the frequency of these genetic
contexts in IncHI2 and Incl2 plasmids was varied. In Incl2
plasmids, mcr-1-pap2 was the most common (n=30), whereas
the remaining four plasmids encoded ISAp/1-mcr-1-pap2. In
IncHI2 plasmids, all mcr-1 genes were flanked by ISApl/1
upstream, and the complete transposon Tn6330 was present
in seven isolates. Generally, mcr-1 was translocated into
plasmid backbones via transposon Tn6330 (ISAp/1-mcr-1-
pap2-1SApl1). Following translocation, loss of ISAp/1 would
disrupt the structure of transposon and stabilize mcr-1 (Sun et
al., 2018). Thus, the presence of the stable mcr-1-pap2
structure in the Incl2 plasmids may also contribute to the
circulation of mer-1 in this broiler farm.

In conclusion, this study reported on an unusually high
prevalence of mcr-1-positive E. coli in a Chinese broiler farm,
which may result from the co-existence of mcr-1 with other
resistance genes in the same plasmid or strain. Our findings
emphasize the importance of appropriate antibiotic use in
animal production as the misuse and abuse of antibiotics
could facilitate the co-selection of mcr-1.
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Figure 1 PFGE pattern of mcr-1-positive E. coli
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